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Auditory streaming is a fundamental aspect of auditory perceptiafels to the ability to parse
mixed acoustic events into meaningful streams where each sgemsumed to originate from a
separate source. Despite wide interest and increasing scientiestigations over the last
decade, the neural mechanisms underlying streaming stilimdargely unknown. A simple
example of this mystery concerns the streaming of simple tegeeaces, and the general
assumption that separation along the tonotopic axis is sufficient tfeans segregation.
However, this dissertation research casts doubt on the validity iofagsumption. First,
behavioral measures of auditory streaming in ferrets provehbgtcan be used as an animal
model to study auditory streaming. Second, responses from neurons irintlaey pruditory
cortex (Al) of ferrets show that spectral components that aleseparated in frequency
produce comparably segregated responses along the tonotopic axis, mavimettier presented
synchronously or consecutively, despite the substantial differendégiinstreaming percepts
when measured psychoacoustically in humans. These results argust dge notion that
tonotopic separatiomper seis a sufficient neural correlate of stream segregation.dlihir
comparing responses during behavior to those during the passive conttigotemporal

correlations of spiking activity between neurons belonging to thee sstneam display an
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increased correlation, while responses among neurons belonging to diffexamssbecome less
correlated. Rapid task-related plasticity of neural recepflislels shows a pattern that is
consistent with the changes in correlation. Taken together thadts neslicate that temporal
coherence is a plausible neural correlate of auditory strearinglly, inspired by the above
biological findings, we propose a computational model of auditory saealgsis, which uses
temporal coherence as the primary criterion for predictingast formation. The promising
results of this dissertation research significantly advance our unu#rgjaf auditory streaming

and perception.
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Chapter 1 Introduction

It seems effortless for us to listen to someone at a crowded cocktail paryytamfollow the

violin line in a symphonic orchestra. However, it is still a mystery how our brasep#rese
complex acoustic scenes into individual auditory “objects” or “streams”. Ancayditream

refers to sound elements coming from an individual sound source and perceived b legtener
coherent entity. Despite much research to understand auditory streaminghogeeyustics
studies, electroencephalography (EEG) and magnetoencephalograpBy gkdidies, brain
imaging, and single/multi- unit recordings, the neurophysiological undengisoif this process
remain largely unknown. There are extensive debates about whether sepathgdoradtopic
axis is the principle involved in auditory streaming, how sound elements geneyétedsame
sound source are bound, how attention affects the neural correlates of sty@achwhat the

role of the auditory cortex is in streaming. In another vein, manyrdurredels of auditory
streaming rely on physiological observations. The performance of allriimels still lags far
behind that of the average human. It seems inescapable that unless we know more abgut the wa
the brain performs auditory scene analysis, our models are unlikely to go nthein. fur
Therefore, answering these questions not only helps us understand the fundamentaf aspe
hearing perception, but also provides the biological evidence and constraints for imgneving

current models.

In this thesis, | am going to tackle some of these issues. The thesisniz@dga the following
way. First, in chapter 2, we demonstrate the behavioral measures of audganyiisg in ferrets.

We have adapted stimuli and tasks from two previous psychophysical studies, botthof whic

1
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involved performance-based measures of auditory streaming and seldetiierat\We trained
ferrets to perform the two auditory perception tasks. The behavioral performdroetsfin the
two tasks varied as a function of stimulus parameters in a way that is tipedjiteonsistent

with the human data. The finding of similar trends in behavioral performance agiarfuric
stimulus parameters in the two species indicates that the perceptual drgamkzthese stimuli
varies in qualitatively the same way in ferrets as it does in humans. Thetef®shows that the
ferret can be a useful animal model to study auditory streaming and pravimasdation for the

neurophysiological studies in chapters 3 and 4.

Second, it is generally assumed that separation along the tonotopic axis isdipéepgnvolved
in stream segregation. Current neurophysiological theories and computatamiels of auditory
streaming rely heavily on tonotopic organization of the auditory system tairexipé
observation that sequential and spectrally distant sound elements tend to forne separat
perceptual streams. In chapter 3, the results from the physiologpesairaents in awake and
naive ferrets are in contradiction with those from the human psychophysical stsgpnRes
from neurons in the primary auditory cortex (A1) of ferrets show that spectrgoonents that
are well-separated in frequency produce comparably segregated regongdke tonotopic
axis, no matter whether presented synchronously or consecutively, despite thetsilibs
differences in their streaming percepts. The results argue against torispeuiral) separation
per seas a neural correlate of stream segregation. Instead, we suggeshpgoaateoherence is

the principle involved in streaming.

Thirdly, inspired by experimental results from Chapter 3, we postulate thaotal correlation
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across auditory channels, and not the tonotopic separation per se, is the keyonalast of
auditory streaming. In chapter 4, we provide an evidence of temporal tonglaetween pairs
of cells in the neural responses from Al of a ferret during auditory strgarurthermore,
comparing the temporal correlations between pairs of cells when the anifoaingel the task
with those at passive condition, we found that attention modulates the correlatioarbpéaie
of cells in favor of the formation of the attended stream. We also found that rapieltisk
plasticity of neural receptive fields shows a pattern that is consisitbnihe changes in
correlation. The results confirm our hypothesis that temporal correlatiomtegtie perception

of streaming.

Finally, inspired by the above neurobiological findings, in chapter 5, we proposepatational
model of auditory scene analysis, which uses temporal coherence as the prit@aoyn for
predicting stream formation. In the model, a multi-dimensional auditory exgeg®n of a
feature vector that includes pitch, timber, and location information is extriactedhe input
mixture. Two-dimensional correlation analysis of the auditory represamgas computed. A
spatial-temporal mask is formed depending on attention or memory in ordegrtodiltthe
attending stream. Channels highly correlated with the target streaenl@anced and the rest are

suppressed.

In summary, auditory streaming is a fundamental aspect of augigwogption. Despite wide
interest and increasing scientific investigations over the dastade, the neural mechanisms
underlying streaming still remain largely unknown. In the liteg the stimuli used in

streaming studies are mostly sequential tones. Most studies dooosthe spectral separation
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between tones and ignored another important factor, the temporarddatween tones, which
is known to be able to mediate the streaming percepts asThetkefore, the general conclusion
drawn from the study of sequential tones only considering the apseparation is that the
tonotopic separation is the principle involved in stream segregation. However, wi@okviigto
account the temporal factor in chapter 3, our neurophysiologicalgdsuit ferrets A1 do not
support this conclusion. Instead, we postulate temporal coherenceparitiple involved in
stream segregation. In chapter 4, we provide an evidence to support ouatjmrstie found
the temporal correlations of spiking activity between neurons glgno the same stream
display an increased correlation, while responses among neuronsifgltndifferent streams
become less correlated. Taken together these results indlhedteéemporal coherence is a
plausible neural correlate of auditory streaming. And we also fdwatdattention modulates this
neural correlate in favor of the formation of the attendechsstrdn chapter 5, we propose a
neurobiologically-inspired computational model of auditory scene dadbgsed on temporal
coherence and attention/memory. Comparing with the conventional computaticditory
scene analysis models (CASAs) which use different cues, sughtchs location, common
onset/offset, and frequency/amplitude modulation, to bind channels belomgitige tsame
stream, our model provides an elegant way of solving the problem gfahts of evidence
derived from multiple cues. The promising results of this dissamtatsearch significantly

advance our understanding of auditory streaming and perception.
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Chapter 2 Behavioral Measures of Auditory Streaming in Ferres

The material contained in this chapter is published as L. Ma, C. Micheyl, P. i, A.J.
Oxenham, and S.A. Shamma. (2010) Behavioral measures of auditory streaming in fege

(Mustela putorius). Journal of Comparative Psychology. 124(3): 317-30.

2.1 Introduction

Humans and many other animal species are faced with the problem that the emtsdhee
inhabit often contain multiple sound sources. The sounds emanating from these sauglees mi
before reaching the listener’s ears, resulting in potentially comptaistic “scenes”. The
listener’s brain must analyze these complex acoustic scenes in orderctpideteify, and track
sounds of interest or importance, such as those coming from a mate, predator, or prigy. Thi
known among auditory researchers as the “cocktail party” problem (Cherry, d953)re
generally, the “auditory scene analysis” problem (Bregman, 1990). One impeasteect of the
auditory system’s solution to this problem relates to the formation of aud#meams”. An
auditory stream refers to sound elements, or groups of sounds, which are usualyeabaatt
an individual sound source, and are perceived by the listener as a coherent ensibyinthef

an oboe in the orchestra, a conspecific song in a bird chorus, the voice of a spealk®awih a cr
and the light footfalls of a predator in the savanna, are all examples of astlie@ms. The
“auditory streaming” phenomenon can be demonstrated using sounds with very siroipbd spe
and temporal characteristics, namely, sequences of tones that altetwatnlie/o frequencies
(A and B) in a repeating ABAB or ABA-ABA pattern, where A and B denote tonassai(ly)

different frequencies, and the hyphen represents a silent gap. Such esduamcbeen found to

5
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evoke two dramatically different percepts, depending on spectral and tempoudlisti
parameters (Bregman & Campbell, 1971; Miller & Heise, 1950; van Noorden, 1975). When the
tones are close in frequency, most listeners report hearing a swigeet stream of tones with
an alternating pitch; this percept is referred to as “stream integjrabn contrast, when the tones
are more widely spaced in frequency, and occur in relatively quick succabsi@imulus
sequence “splits” perceptually into two streams, as if produced by two segmratesources;

this is referred to as “stream segregation”. The formation of auditory Stte@srbeen the object
of a large number of psychophysical studies over the past fifty years (fewsg\wee Bregman,
1990; Carlyon & Gockel, 2008; Moore & Gockel, 2002). The neural basis of the phenomenon
has also attracted considerable attention, inspiring studies with approagfiag feom single

or multi-unit recordings in macaques (Fishman, Reser, Arezzo, & Steinschi2€id&r Micheyl,
Tian, Carlyon, & Rauschecker, 2005), bats (Kanwal, Medvedev, & Micheyl, 2003), bird& (Bee
Klump, 2004; Itatani & Klump, 2009), guinea pigs (Pressnitzer, Sayles, Michapinger,

2008), and ferrets (Elhilali, Ma, Micheyl, Oxenham, & Shamma, 2009) to electro-gmetoa
encephalography and functional magnetic resonance imaging in humansytsghalk,

Oxenham, Micheyl, Wilson, & Melcher, 2007; Gutschalk et al., 2005; Snyder, Alain t&kic
2006; Sussman, Ritter, & Vaughan, 1999; Wilson, Melcher, Micheyl, Gutschalk, & Oxenham

2007).

While there exists a substantial body of experimental data on auditompisigga humans, and
while neuroscientists are starting to explore the neural basis of this phenomendnhuarbahs
and non-human animals, the evidence for auditory streaming in animals reméis (for

recent reviews, see Bee & Micheyl, 2008; Fay, 2008). Measuring auditonnstgei@ non-
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human species is not as easy as measuring it in humans, who can be askgavtiaettiey
perceive. This may explain why behavioral studies of auditory streamengmals remain
relatively few and far between. The earliest such study was peddiyndulse, MacDougall-
Shackleton, and Wisniewski (1997). In this study, starlings were trained tordisate 10-s
excerpts of conspecific birdsongs, and subsequently tested for generalizdtionxures of
two simultaneous birdsongs (conspecific plus heteropecific, or conspecific plua naises or
chorus). Performance with two simultaneous birdsongs was still relatigydibout 85%
correct), and animals readily generalized to mixtures of familiarssiongnfamiliar
backgrounds, suggesting that they were able to segregate percepatdhgét song from the
background. This result was interpreted as evidence for auditory streagategr in starlings.
Further evidence that starlings experience stream segregation wasdbtaneslegant study
by MacDougall-Shackleton, Hulse, Gentner, and White (1998), using stimuli and batask t
were perhaps less ecological, but more comparable to those used in human psytitalacous
studies. In this study, starlings were conditioned using sequences of coresiartity tones
arranged temporally into triplets (i.e., groups of three tones separateddt gap), which, in
human listeners, yield a “galloping” percept (van Noorden, 1975). The birds wereekted for
generalization to sequences of triplets in which the middle tone had a diffecprarfog from
the two outer tones. The results showed decreasing generalization witkimgfeagquency
separation between the middle and outer tones. This effect is consistent witultseofe
psychoacoustical studies of auditory streaming in humans, which indicate treqency
separation increases, the middle and outer tones are increasingly likelygardes separate

streams, and that when this happens, the galloping rhythm is no longer heard.
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Fay (1998) provided evidence that auditory streaming is also present in & sp&dmch the
phenomenon is perhaps less expected to play an important role. He conditioned goldfish on a
mixture of two trains of acoustic pulses, which differed in spectral content (lowginscéiter
frequencies) and repetition rate (19 pulses/s for the low-frequency @nse85 pulses/s for the
higher-frequency pulses). Later, the fish were tested for geneiiizesing single (low or high
center frequency) pulse trains over a range of rates (between 19 and 85 puist&/gHroup

tested with the low center-frequency pulses, generalization decreased togvear pulse rates;

in the group tested with the high center-frequency pulses, the converse was obsesved. Thi
pattern of results is consistent with the hypothesis that, during the conditionirg {hieafssh

heard the low-frequency and high-frequency tones as separate streamfdecaent study

(Fay, 2000), the fish were conditioned using trains of pulses alternating betveeeentsr
frequencies (a high frequency, 625 Hz, and a lower frequency drawn between 240 and %00 Hz) a
an overall rate of 40 pulses/s (20 pulses/s at a given frequency). Subsequentl, weedi

tested for generalization using only 625-Hz pulses presented at variou$roate20 to 80 Hz).
Generalization to rates near 20 pulses/s was stronger in the group conditithnealses at 240

and 625 Hz than in the other training groups. This outcome is consistent with the hygb#tesis
the mixture with the widest frequency spacing was heard as two separatess whereas the
other mixtures were less easily segregated, due to the smaller fregepacation between the

alternating tones.

Some evidence that auditory streaming is also present in species thateudosaly related to

humans has been provided by Izumi (2002). To test for auditory streaming in Japanesesmonke

lzumi used an approach inspired by psychoacoustical studies in which listeners lcadrizes
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familiar melodies, the notes of which were played in alternation — the atedeanelodies
paradigm (e.g., Dowling, 1968, 1973). One of the main findings of these studies was that
listeners’ performance in the identification of such “interleaved melbdgsally increased with
the mean frequency (or pitch) separation between the two melodies. Thisveffiiebtis well
known to music composers, can be explained based on the observation that frequenocyrseparati
facilitates stream segregation (van Noorden, 1977). Izumi (2002) replacedldlakéesby short
sequences of tones, which were either rising or falling in frequency. The nsomkey first
trained to discriminate such sequences presented in isolation. Then, the sequences wer
interleaved temporally with a sequence of unrelated tones. Performahezinterleaved
condition improved as the mean frequency separation between the tones in the teavederl
sequences increased, consistent with the results of interleaved meladies isthhumans, which
have been interpreted in terms of stream segregation (Bey & McAdams, 2002, 2008gDowli

1968, 1973).

The behavioral findings reviewed above suggest that both auditory streamiingcprahcy-
selective attention are relatively basic auditory abilities, share@fous animal species. The
current experiments were performed in the context of a broader research pinejeltimate

goal of which is to investigate neural correlates of auditory streaamdgelective attention in

the auditory and prefrontal cortices of behaving ferrets. One of the majgoaigef this

project involves devising behavioral tasks that can be used to manipulate—and at themeame t
measure—auditory streaming and selective attention in ferrets. Inutertiwe were looking for
behavioral tasks that could be used to encourage stream segregation and frezjaetiog-s

attention. The conditioning-generalization paradigms used by Fay (1998, 2008) and Mac-
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Dougall-Shackleton et al. (1998) were “neutral”; the animals were not rewagrdeifically for
segregating (or for integrating) streams. From this point of view, thesestard@i comparable to
human studies in which listeners are simply asked to report whether they hearass
sequence as one stream or two streams, and not encouraged by instructions, oratad, de
try to hear the sequence in a specific way (see van Noorden, 1975). Here, we wigcalbpe
interested in manipulating the attentional and perceptual state of the anondeér to later
measure the influence of such a manipulation on neural responses, compared to passive or
“neutral” listening to the same stimuli. A second important constraint in gigrdef our
experiments stemmed from our long-term objective of characterizing therné of behavior in
the task on neural responses, as measured using, e.g., “classic” frequponga&sirves or
spectro-temporal receptive fields. We reasoned that this, and the intesprefdhe results in
terms of sequential streaming and frequency-selective attention, wouldlitetéacby the use
of stimuli with relatively simple and tightly-controlled spectro-tengbcharacteristics, in
contrast to the use of natural sounds (e.g., bird songs) used by Hulse et al. (1997) and

Wisniewski and Hulse (1997).

These considerations led us to adapt stimuli and tasks from two previous psychopghydies)

both of which involved performance-based measures of auditory streaming angeselecti
attention. The stimuli and task that we used in our first experiment were adapteaf

experiment in humans by Micheyl, Carlyon, Cusack, & Moore (2005), who found that thresholds
for the discrimination of changes in the frequency of the last B tone in an AfBdiesce were
influenced by stimulus parameters known to control the stream segregation aaure t

sequences. Specifically, they found that thresholds increased (i.e., worsethedy@guency
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separation between the A and B ton&B,6) decreased, and that they decreased (i.e., improved)
as the tone-presentation rate and overall length of the sequence increasedr@nsed|
separations, fast tone-presentation rates, and long sequence lengthtaeiteadihg factors of
stream segregation, this pattern of results is consistent with a benaflohce of stream
segregation on the ability to discriminate changes in the frequency of thesB Aditesly
explanation for the influence of stream segregation on frequency-disdioniparformance in
this experiment is in terms of selective attention. When the A and B tones et@ebsaparate
streams, attention can more easily be focused selectively on the B tondsnithisotential
interference from the A tones in the processing of the pitch of the B tones yMsclarlyon,
1998). In particular, when the A and B tones are heard within a single stream, hHgupitas”
between the A and B tones may interfere with the detection of the (usuadiNgrsirequency
shift in the last B tone (Watson, Kelly, & Wroton, 1976); when the A and B tones arevpdrcei
as separate streams, the pitch jumps are no longer heard, and listeners canelyous the B
tones. In Experiment 1, we adapted the stimuli and task used by Micheyl, Carifo(2605) to
measure stream segregation in ferrets. Based on our experience feaiatsgin auditory-
perception tasks (e.g., Atiani, Elhilali, David, Fritz, & Shamma, 2009; Fritzlal)Hbavid, &
Shamma, 2007; Fritz, Shamma, Elhilali, & Klein, 2003; Kalluri, Depireux, & Sharafas;
Yin, Mishkin, Sutter, & Fritz, 2008), these animals can detect frequency diffsrdndehey
have difficulties making low-versus-high pitch judgments—an observation caadfioy recent
results (Walker, Schnupp, Hart-Schnupp, King, & Bizley, 2009). Therefore, we chdregask
from pitch-direction identification to simple pitch-change detection. Utledehypothesis that

ferrets experience stream segregation, we predicted that their thresinaldsdetection of a
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change in the frequency of B tones in ABAB... sequences should decrease (improve) with

increasing A-B frequency separations.

The stimuli and task in our second experiment were inspired by studies of “intoratat
masking” in humans. The expression “informational masking” refers to madkautsahat
cannot be explained primarily in terms of peripheral interactions, and that do not depend
critically on the energy ratio of the target and masker (for a recerivesee Kidd, Mason,
Richards, Gallun, & Durlach, 2008). Informational-masking effects are iefigéarge when the
spectral characteristics of the masker vary randomly across preses)tand the target and
masker are easily confusable. However, these effects can be drdynegmated by stimulus
manipulations that promote the perceptual segregation of the signal and maskestafce] the
detection threshold for a target tone of fixed frequency can be elevated by 40 dE difr ther
tone is presented synchronously with a multi-tone masker, the frequencieglofane drawn
randomly on each trial (Neff & Green, 1987); this is the case even if the nfieskeencies are
not allowed to fall within the same critical band as the target. However, ibtistant-frequency
target tones repeat at a rate sufficiently fast for them to formastihich separates (“pops
out”) from the randomly-varying masker tones, they become easily deteatgh (Kidd,
Mason, Deliwala, Woods, & Colburn, 1994; Kidd, Mason, & Richards, 2003; Micheyl, Shamma,
& Oxenham, 2007). In general, performance in the detection of the target tones ingsrtves
width of the protected region and the repetition rate of the target tones in¢teaket(al.,

1994; Kidd et al., 2003; Micheyl, Shamma et al., 2007). Under the hypothesis that ferrets

experience the effect, we predicted that these two trends would be observedimengz

12

www.manaraa.com



2.2 Methods

2.2.1 Subjects

Two female ferretsMustela putoriuyobtained from Marshall Farms were used in these
experiments. Both of them were young adults (about 2 years old) each about 780gihin wei
The ferrets were housed in pairs in a cage in facilities accredited by thecamassociation
for Laboratory Animal Care and were maintained in a 12-h artificial-tgcle. They were only
brought to the Neural Systems Lab during training and testing sessions. Tteehadr&ee
access to dry food all the time but water access was restricted taeveded during task
performance 5 d/week and on weekends, they had continuous access to water. Animahconditi
was carefully monitored on a daily basis, and weight was maintained above 80% ad thei
libitum weight. The care and use of animals in this study was consistent with NIH iGesdel
All procedures for behavioral testing of ferrets were approved by theitisidl animal care

and use committee (IACUC) of the University of Maryland, College Park.

2.2.2 Experimental Design
Two domestic ferrets were trained to perform two different tasks, peafare in which has been
previously found to be related to stream segregation in humans. The stimuli and behavioral

paradigms are detailed below.

2.2.2.1 Experiment 1. detection of a frequency shift within a stream.
On each trial, a sequence of pure tones alternating between two frequeramesEAIn a

repeating ABAB... pattern, as illustrated in Figure 2.1, was presented. On 78%radltheite
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B frequency changed to a higher frequency, B'. On the remaining 22% oftbettre B
frequency did not change; these trials are hereafter referred to as”shamtask of the ferret
was to detect the frequency change, when that change was present. Basdhdingiseof
Micheyl, Carlyon et al. (2005) we predicted that if ferrets experiencerstrigathen their
performance in the detection of a change in the frequency of the B tones (from Btoud be
higher when the A-B frequency separation is large (promoting stream segndggtiveen A and
B) than when it is small (making it difficult or impossible to hear the B totnears as a

separate entity).

Frequency
R | Reference Target —’
— — — B’
B — — — —
|
A —_— — — —_— S —_— — S
Time

Figure 2.1 Spectro-temporal structure of the stimuli used in Experimehislsfiows an
example stimulus sequence on a trial containing target tones. The gragpbasemnt tones. The
“reference” portion of the stimulus consisted of A and B tones alternating&etwo
frequencies, A and B. The “target” tones had a higher frequency than the B tones] dsridt
Two stimulus parameters were varied: the frequency separation betweeanteB tones,
AFag, and the frequency separation between the B and B' ibRgis,(See text for additional

details).

The animal was trained to lick a waterspout during the “reference” seqoieABetones, and to

stop licking upon detecting the change from B to B'. Initially, the animaknaased to detect a
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relatively large difference in the frequency of the B tones (from B tmBlje absence of any A
tone. Once performance in this condition reached an asymptote, the A tonesredieady 19
semitones (ST) below that of the B tones were introduced. Initially, thiedethee A tones was

set 50 dB below that of the B tones, which were always presented at 70 dB SPL. Thetlevel of
A tones was then raised progressively, over the course of several weeks, rgparttie

animal’s performance. Eventually, the animal was able to perform theetaikaly well with

the A tones at the same level as the B tones. At that point, data collection begal, ttaiamg
took about 7 months. The actual test phase lasted twelve days (four days #FggcBuring

this test phase, the ferret performed at least 70 trials each day.

Detailed stimulus parameters were as follows. Each tone was 75 ms long, includiransan
and offset cosine ramps. Consecutive tones were separated by a silent gajs.of Bérefore,
the repetition rate of the elementary AB pattern was equal to 4 Hz. Therfegopfehe B tone
was fixed at 1500 Hz. The frequency of the A tone was constant within a block of trials, but
varied across testing days in order to produce different frequency separatveesnode A and
B tones, denoted here ABag. ThreeAFas’s were tested: small (6 ST), medium (9 ST), and
large (12 ST, i.e., one octave). Although the smali€s (6 ST) used here is relatively large,
and would be considered “intermediate” in humans, we found while training the fetristetha
animal could not do the task with smaller A-B separations; consequently, we decitked t
larger separations. The frequency separation between the B and B' tones denbtes,
varied randomly across trials within a test session in order to produce difearelstof task
difficulty, yielding different levels of performance. In all conditions inieh the A tones were

present, five values adfFgg: were tested: 4%, 12%, 20%, 28%, and 36%. A larger number of
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AFgg's were tested during the initial training phase, in which the A tones were ab&erit06,

12, 14, 16, 18, 21, and 27%.

The total trial duration varied randomly from 1.875 to 7.875 s, depending on the number of
“reference” pairs (AB) presented before the introduction of the B' tones. Thizenuvas
selected randomly between 4 and 28 on each trial. The number of “target” pa)ravéaBixed
at 3. If the animal stopped licking within 850 ms after the introduction of the fitenB in the
sequence, this was counted as a hit; otherwise, the trial was categorizeidsadfeanstop-lick
response was produced on a sham trial, it was counted as a false alarm; qttrexrisé was
counted as a correct rejection. False alarms had no consequence. Followingrtisea8tsd the
introduction of the first B' tone in the sequence, the spout became electrified, aadheeiecret
received a mild shock if it continued licking afterwards, and the trial was thhetass. Each

trial included silent periods of 400 ms pre-stimulus, and 600 ms post-stimulus.

2.2.2.2 Experiment 2: detection of regularly repeating target tonesin a random multi-tone
background.

This experiment was inspired by psychoacoustic experiments on informatiasiahon (Kidd et

al., 1994; Kidd et al., 2003; and Micheyl, Shamma et al., 2007). An example spectrogram of the

stimuli used in this experiment is shown in Figure 2.2. On each trial, a sequenisérgpo$

multiple tone pips with random frequencies and random onset times (“maskers’Ppresented.

At some point in this random sequence, a regularly repeating sequence of doagteartey

tones (“targets”) was introduced. The task of the ferret was to detect tbesaggence amid the

randomly varying masker tones. The animal was trained to withhold licking untértiet tvas
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introduced, and to start licking upon detecting the target. If a lick responseencaithin 150

to 1050 ms after the onset of the first target tone, it was counted as a hit andedinfithca 1/3

ml of water. These parameters were chosen based on the consideration that tsergaictken

time in ferrets is approximately 150 ms, and that the target was 900 ms long Midseo

consequence. In this experiment, there were no “sham” trials; the targetmerepresented on

all trials. However, the start time of the target sequence varied randetwlgdn 720 and 2160

ms after the onset of the masker sequence. When the animal produced a lick respanfiecbefor

onset of the target sequence, this was counted as a false alarm, thestabhbwtad, and

followed by a short timeout.

Frequency
A

Reference
|_

Time

Figure 2.2 Schematic spectrogram of an example stimulus presented omaExjariment 2.

During the “reference” portion of the stimulus, only masker tones (gray bensjandom

frequen

cies and onsets times were presented. During the “target” gt ttexes (dark bars)

repeating regularly at a constant frequency were introduced. The grayreued the target

represents the “protected zone” (PZ), within which masker tones were notdtlove! (See

text for

additional details).
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Note that response contingencies are reversed here compared to Experiment positia
reinforcement is used (as opposed to negative reinforcement in Experiment 1). Trolsisont
specifically important for physiological experiments, because auditwtical responses and
adaptations can depend critically on whether the “target stimuli” in thewsslksaversively or
positively reinforced (David, Fritz, & Shamma, 2008). Consequently, we fedtstimvportant to
demonstrate in this study that ferrets could perform both forms of the streasksgtaas to

facilitate recordings from their auditory areas during such behaviors.

The stimulus details were as follows. Each tone-pip (target or maskerOwas long, including
5 ms onset and offset ramps. On each trial, 5 target tones were presented. Conaggritive t
tones were separated by a silent gap of 110 ms, yielding a repetition abteuo6.6 Hz. Trial
length varied randomly between 1.62 and 3.06 s across trials. These durations include the
variable-length “reference” sequence (0.72 to 2.16 s) plus the fixed-duratiget*tsequence.
The masker tones occurred at an average rate of 89 tones per sec. The maskergones we
generated as follows: first, eight different masker-tone frequeneesselected at random for
every 90 ms; then, the masker tones were shifted pseudo-randomly in time, in such & way tha
they were not synchronous with the target, except by chance. The masker toaecies=qwere
drawn at random from a fixed list of values spaced one ST, approximately 6% eaplding a
“protected zone” (PZ) around the frequency of the target tones. The half-witith BZt
determines the minimum allowed frequency separation between the target dodabkersasker
component on either side. Three half-widths were tested: small (6 ST), mddisi ), and
large (14 ST). Masker frequencies were selected from within a two-octaye oa both sides of

the PZ. The target frequency was roved daily from 3.5 to 4.1 kHz. PZ was varied ranadomly f
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day to day, while target intensity and trial lengths varied within a sesdienn@sker tones were
presented at 50 dB SPL (each). Target-tone levels of -4, 0, +4, +8 and +12 dB telttese
level of the masker tones were tested. These values were chosen to produce liifferes,

allowing a psychometric function to be traced.

We also studied the influence of target repetition rate on performance. Theeweetdested:
3.7,5.7, and 11.1 target tones/s. These different rates were produced by varying the alurati

the silent interval between consecutive target tones (from 20 to 200 ms).

For this task, the training phase spanned 14 months, including sporadic intermissions of a few
weeks during which the animal did not behave. Typically, the ferret was traneedifys per

week. Initially, the animal was trained with a very wide PZ (16 ST). Tidéhwef the PZ was
progressively reduced, week after week (or sometimes, month after month). Whamtaks
performance reached an asymptote, training stopped and testing propdr Btaring the test
phase, the animal performed a total of 24 sessions using the 6- and 10-ST P4dthal{twelve
sessions for each of these two half-widths), at a pace of one session per day. F@TtH&Z14

half-width, the animal performed 11 daily sessions.

2.2.3 Apparatus

Ferrets were tested in a custom-designed cage (8 x 15 x 9 inch) mounted iBeitex-foam
lined and single-walled soundproof booth (Industrial Acoustics Corporation). The stierali
generated using Matlab (The MathWorks, Natick, MA). They were sampled at 40 &ld pl

out at 16-bit resolution (NI-DAQ), amplified (Yamaha A520), and finally delivenealigh a
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speaker (Manger) mounted in the front of the cage, at approximately the saheheig the
testing cage as the metal spout that delivered the water reward. Lick essp@ns registered by

a custom “touch” circuit Acknowledgement.

2.2.4 Data Analysis

The behavioral data were analyzed using techniques from signal detection Greaty &

Swets, 1966). In particular, the responses of the animals were used to compuiz tineler¢he
receiver operating characteristic (ROC). The area under the ROC praxidebiased measure

of performance, with 0.5 reflecting chance performance, and 1 reflectiregipeeirformance

(Green & Swets, 1966; Hanley & McNeil, 1982). In Experiment 2, ROCs were derived by
varying the duration of the response window, defined as the time interval witldih aktart-

lick event was registered. The rationale for this analysis iddhgér response times correspond

to more liberal placements of the internal decision criterion (Luce, 1986f¥tz, & Shamma,
submitted). The range of possible occurrence times of the first targenttheestimulus

sequence was from 0.72 to 2.16 s. On trials on which the target tones occurred relatiyely

(i.e., between 720 ms and 1620 ms), the response window started 150 ms after the onset of the
first target, and a lick event occurring within the response window was countdit.a®mtrials

on which the targets occurred relatively late (i.e., between 1.62 s and 2.16 gptnsee

window started 150 ms after the time at which the first target should have startbe target

tones been early, and a lick occurring within the response window was countedsasaéafah.

The duration of the response window was varied from 0 to 900 ms in 50 ms increments. Areas
under the resulting ROCs were approximated using trapezoids. The advantage efttbdsim

that it does not require specific assumptions regarding the underlying distrgbut
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In Experiment 1, a different data-analysis technique had to be employed inoorder t
accommodate the different experimental design, and different responisgjenaies. First, we
measured the duration for which the animal had made contact with the water spoua wil-

ms “reference” epoch, which just preceded the introduction of the target toimes difitation

was less than 20 ms (5% of the reference-epoch duration), we considered this asaornndi

that the animal was not ready for task performance, and data from the cuatentitei not

included into subsequent analyses. In contrast, trials on which the animal lickedghspeat

for at least 20 ms during the reference period were retained for furthgsian@hese trials were
divided into two groups, depending on whether the animal had come into contact with the water
spout during the time period within which shocks could be delivered if the animal had not
stopped licking. This “shock period” started 850 ms after the onset of the firdtttargeand

lasted for 400 ms. If the animal had made contact with the spout during the shock period, the
trial was categorized as a “miss” or as a “correct rejection”, depgdinvhether or not target
tones were presented on that trial. If the animal had not made contact with théuspauthe

shock period, the trial was categorized as a “hit” or as a “false-alarpgéndang on whether or

not target tones were presented on that trial.

As a result, a single pair of hit and false-alarm rates was avaidat#ach condition. When the
ROC contains a single point, approximation using trapezoids can lead to severe nnateyast
of the ROC area. Accordingly, in this experiment, we had to resort to paraasstmicptions.

Specifically, the ROC area was computed as the surface under a binormadazswg through

three points: (0,0), (1,1), and the point defined by the measured pair of hit and fatseatds.
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Thresholds in both experiments were estimated by fitting the ROC-areadataraction of the
relevant stimulus parametexKgg: in % for Experiment 1, relative target level in dB for

Experiment 2) with a sigmoid function defined by the following equation,

PAA)= 05+ pfi+e @7 | )
wherePc is the proportion of correct responsagjenotes the value of the stimulus parameter
(AFgg in % for Experiment 1, relative target level in dB for Experimenp23;the dynamic
range of the psychometric function, which corresponds to the difference hdtweeguessing
rate (0.5) and the lapse (i.e., miss) ratd is the threshold, defined as the frequency difference
(in Experiment 1), or target level (in Experiment 2) at which= (0.5+0)/2, i.e., the midpoint
between the guessing rate and the lapseasatea “standard deviation” parameter, which
corresponds to the reciprocal of the slope of the psychometric function. Forriepieti, a data
point corresponding td?c(O): 0.5was introduced in order to reflect the fact that whéps:
was equal to 0% (i.e., the B and B' tones had the same frequency, and there was for tignal
animal to detect), performance should be at chance. In addition, the contribution of aach me
data point to the overall fit was weighted by the inverse of the variance aleungtan, and
constraints were placed on the slope parameter in order to prevent unréglgteep PFs in the
9-ST AFag condition. For each condition, 95%-confidence intervals (Cls) around the threshold
estimates were computed using a statistical resampling-witheeapkent technique (bootstrap

with 1,000 draws) assuming binomial dispersion (Efron & Tibshirani, 1993).
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2.3 Experiment 1

2.3.1 Results

The results of Experiment 1 are illustrated in Figure 2.3. Figure 2.3a shows goleréai-
normal ROC, determined as explained in the Data Analysis. This ROC waseddtased on a
pair of hit and false-alarm rates measured using a 12Fad, and a 36%A\Fgg. In this example,
the area under the ROC, which is shown in gray, was equal to 0.87, indicating good

performance.

The ROC area was computed in a similar way for all aiiigg andAFgg: conditions. The
resulting set of ROC areas are shown as data points in Figure 2.3b. Theserddithea using
sigmoid psychometric functions for eatkag condition separately, and the best-fitting
functions were used to estimate a threshold (defined asfievalue corresponding to the

midpoint between chance performance and the upper asymptote) fatFegatondition.

The resulting threshold estimates are plotted in Figure 2.3c, along with th€1852omputed

using bootstrap). It can be seen that thresholds were highest for theAGweststed (6 ST),

and substantially smallep & 0.05) for larger separations (9 and 12 ST). In fact, the thresholds
measured with separations of 9 and 12 ST were not significantly larged.05) than those
measured in the baseline condition, which did not contain any A tones. Comparinggheltisre

for eachAFag condition to those for the baseline condition, the effect sizes (Glgsa/isre 6.09

with 95% Cls [3.91, 4.21] (6 ST vs. baseline condition), -0.83 with 95% Cls [-0.92, -0.74] (9 ST
vs. baseline condition), and 0.48 with 95% Cls [0.39, 0.57] (12 ST vs. baseline condition). The

only apparent difference in results between the 9 and 12 ST conditions was thatjpie sy
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proportion of correct responses was somewhat higher in the latter condition (around 019) than i
the other conditions. We have no explanation for this marginal observation. While agymptot
proportions of correct responses below 1 are usually regarded as indicative mirattent

“lapses” (Klein, 2001), there was no a priori reason to expect a lower lapse-tfael?-ST

condition than in the other conditions.

(a) AF,. = 12 semifones (o)
AF,_ = 36%
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Figure 2.3 Performance measures in Experiment 1. (a) Example R@Cofatained using the
technique described in the main text. This curve was computed based on data obtak® at 12
AFag and a 36%A\Fgg. (b) ROC area as a function dfFgg: and best-fitting psychometric
functions. ROC areas are shown as symbols; the best-fitting psychomettiorfsias lines. The
different symbols and line styles indicate differafig conditions (6, 9, and 12 ST). (c)
Frequency discrimination thresholds (FDTs) estimated based on the psyctdumetions
shown in panel b. The error bars indicate 95% Cls (bootstrap) around the mean FDTs. The

dashed line indicates non-overlapped over 95% ClIs.
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2.3.2 Discussion

The pattern of results illustrated in Figure 2.3c is qualitatively camdistith the psychophysical
data obtained by Micheyl, Carlyon et al. (2005) in human listeners. These dathuatghat
frequency discrimination thresholds for target B tones inside repeating adfesces
comparable to those used here improved as the frequency separation between thechesid B t
increased. They explained this effect, and other effects of stimulus parsa(iretkiding rate

and sequence length), in terms of stream segregation and selective attgetdicaly, they
suggested that stimulus manipulations that promoted the perceptual segreghgoA ahd B
tones into separate streams made it easier for listeners to attetisdgedglecthe B tones, and to

ignore the irrelevant but potentially interfering pitch information conveyetthid A tones.

The presented finding of smaller thresholds for the detection of frequency chatige8itones
for larger A-B frequency separations is consistent with the hypothessitham segregation
facilitates selective attention in ferrets and leads consequently to imptetesdion thresholds.
However, this interpretation can be further supported by other factors that are knoagutats
streaming such as tone presentation rate and sequence length. Unlike our pre@omneeis
in humans (Micheyl, Carlyon et al., 2005), we did not manipulate these parametersunéhé
experiments. Hence, it will be interesting to explore in the future the deperafatetection
thresholds at a fixedFag on presentation rate and sequence length, and whether this

dependence is consistent with a beneficial influence of stream segregation.

Although the ferret data show trends that are qualitatively similar to those/etse

psychophysical studies with human listeners, there are also several imgifféaahces
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between the ferret and human data. Firstly, the frequency-discriminatshaolds that were
measured in the ferret are substantially larger than those that havaed®sired in humans
typically. In traditional 2I-2AFC experiments, highly trained human listec@nsachieve
frequency-discrimination thresholds of 0.1-0.2% (roughly 1.5-3 Hz) at 1.5 kHz (e.g.eMoor
1973; Wier, Jesteadt & Green, 1977; Micheyl, Delhommeau, Perrot, & Oxenham, 2006). In an
ABA context, Micheyl, Carlyon et al. (2005) measured thresholds of less than 1%asting
frequencies in the vicinity of 1 kHz—at least, when the A-B frequency sepaveas

sufficiently large for listeners to hear the A and B tones as sesareéns. These values are
substantially smaller than the 8% or more average thresholds measuraddesreomparable
(though not identical) stimulus conditions, using different procedures. On the other hand, the
thresholds that were measured in this study compare well with those obtainedrireastady
(Sinnott, Brown, & Brown, 1992) in the gerbil (9% at 1 kHz, 10% at 2 kHz). These thresholds
are also not very far off from those measured in the rats, Guinea pig, or chjnchdle

frequency discrimination thresholds ranging from 2 to 7% on average (withrsiddsteer-

subject variability) have been obtained using test frequencies between 2 and “e&Her(H
Heffner, & Masterton, 1971; Kelly, 1970; Sloan, Dodd, and Rennaker, 2009; Nelson & Krieste
1978; Syka, Rybalko, Brozek, & Jilek, 1996; Talwar & Gerstein, 1998, 1999). Thus, even though
ferrets are not rodents (they are carnivores, most closely relateddelg)e their frequency
discrimination thresholds appear to be similar to those of rodents, which arallyenech

larger than those measured in humans. In all other species in which frequencyirthsomm
thresholds have been measured, to our knowledge, the results indicate that thesddlaeshol
not quite as low as those measured in highly trained human listeners—although foegatant

be as low as 0.85% at 1 kHz and 0.75% at 2 kHz (Elliott, Stein, & Harrison, 1960); for dog,
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roughly 0.9% at 1 and 2 kHz (Baru, 1967). This appears to be the case even for monkeys, in
which frequency discrimination thresholds ranging between 1.6 and about 4% have been
reported (Prosen, Moody, Sommer, & Stebbins, 1990; Sinnott & Brown, 1993; Sinnott, Petersen,
& Hopp, 1985). It has been suggested that small frequency-discrimination thresholdg{selow

kHz in humans reflect the use of temporal (i.e., phase-locking) information (M@8x®; Sek &
Moore, 1995; Micheyl, Moore, & Carlyon, 1998), whereas monkeys and other animals may rely
more heavily on tonotopic (i.e., rate-place) information (Prosen et al., 1990; Sinnait\&,Br

1993; Sinnott et al., 1985).

A second noteworthy difference between the ferret results and the huraas tthat, during the
training phase, the ferret was found to be largely unable to perform corngiatente chance
when the A-B frequency separation was smaller than 6 ST; this ismadlies separations were
not included into the design of Experiment 1. In contrast, in humans, thresholds could still be
reliably measured fokFag’s as small as 1 ST (Micheyl, Carlyon et al., 2005). A possible
explanation of this discrepancy is that, although human listeners almostlgdréard the tones
as a single stream in these conditions, they could still perform the taskthbamlance level by
comparing the frequency of the last B tone with that of a temporally ad@dent, or by

sensing an overall increase or decrease in pitch between the last twa fipdetsrret was
perhaps not able to adapt its listening strategy depending@nto take advantage of a

different cue at small A-B separations than at larger ones. In this cohtgerbdervation that
ferrets appear to need largdfag’s than humans to perform reliably in the task could be due to
larger frequency separations being needed to induce a percept of strezgatsagin ferrets

than in humans. For humans, the fission boundary, which corresponds to the smallest frequency
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separation below which listeners are no longer able to hear two separate StseaMsorden,

1975), is approximately equal to 0.4 times the equivalent rectangular bandwidth (ERB) of
auditory filters (Rose & Moore, 2000; Rose & Moore, 2005). At 1 kHz, the ERB for normal-
hearing listeners is 132 Hz (about 13% of the center frequency) (Moore, 2003), ysefdisign
boundary of approximately 5% of the center frequency, or slightly less thantbrsenhlicheyl,
Carlyon et al.’s (2005) data indicate that the listeners in that study useathed\Fags's larger

than 1 semitone to be able to discriminate changes in the frequency of the B toredyrelat
accurately. To the extent that the fission boundary for stream segregati@vatal@uditory-

filter bandwidths across species, one should expect this boundary to be largeranarret
humans. Even though, to our knowledge, auditory-filter bandwidths have not been measured in
ferrets, the various other mammalian species in which they have been meakaveak iy,

which include the cat (Pickles, 1979; Nienhuys & Clark, 1979) chinchilla (Seaton & Tsahiot
1975) and macaque monkey (Gourevitch, 1970; for a review, see Fay, 1988), indicate somewhat

larger bandwidths than in humans (Shera, Guinan & Oxenham, 2002).

Another factor, which may explain why ferrets require larger A-B frequeaparations than
humans, relates to frequency-selective attention bandwidths. Frequency«saléention is

likely to be critically involved for successful selective processing aigbsin frequency in the
presence of extraneous tones—in the present case, temporally adjacentgAetare=n the
target (B or B') tones. In humans, frequency-selective attention hasotmathtibeen measured
using the “probe-signal” method (Greenberg & Larkin, 1968). In these expesinteatistener
detects a tone close to its masked threshold in noise, and on a small proportion of randomly

selected trials, the signal is presented at another frequency (probegsiilie of these
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experiments reveal that, as distance between the probe frequency and tHeesjgaaty
increases, the percentage of correct detections decreases, forming texl Mv&raped
selective-attention curve (Dai, Scharf, & Buus, 1991; Greenberg & Larkin, 19@&8width of
the curve provides an indication of the bandwidth of the frequency-selectiveoattdter in the
listener. In humans, this width is closely related to the bandwidth of auditeng fiNoore,
Hafter, & Glasberg, 1996). To the extent that a similar relationship exigets, and that
auditory-filter bandwidths are wider in ferrets than in humans, this could explgifewhts
need larger A-B separations to successfully detect changes in the frequepeyifi€ tones in a

stimulus sequence that contains other (irrelevant) frequencies and freghanggs.

2.4 Experiment 2

2.4.1 Results

Figure 4a illustrates how the hit and false alarm rates measured irglrg@ent increased with
the duration of the response window. In this particular example, the PZ half-widi&as
and the target tones were 12 dB above the masker tones. Both the hit rate and dlerialsde
tended to increase with the duration of the response window. However, the hit ratedadcre
more steeply than the false alarm rate, indicating that in this conditionyrdteciguld reliably

detect the target tones.

These pairs of hit and false-alarm rates were used to construct the ROC isirogure 2.4b. In
this example, the ROC area was equal to 0.81. ROC areas were computed in forseaely
PZ-width and target-level condition. The resulting ROC areas are plottedidtiari of target
level in Figure 2.4c. As expected, ROC area increased with tavgét@verall, performance
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was lower at the smallest PZ half-width (6 ST) than at larger halfgidi0 and 14 ST). This

effect is illustrated in Figure 2.4d, which shows how thresholds (estimated dashe
psychometric-function fits as explained in the Data Analysis section) inghas/ethe PZ width
increased. Comparing the thresholds among each PZ condition, the effe@itetdgss’ g) were
4.41 with 95% Cls [4.25, 4.57] (6 vs. 10 ST condition), 3.03 with 95% Cls [2.90, 3.16] (6 vs. 14

ST condition), and 0.62 with 95% ClIs [0.53, 0.71] (14 vs. 10 ST condition).

(a) 1 (b) 1
; 0.8 —»— false alarm rate 0.8
g | —=—hitrate o
PZ = 14 semitones ; 0.6 206
Target Level = 12dB o ]
=04 T 04 ROC Area=0.81
T2 0.2
o &
0.15 045 0.735 1.03 0 02 04 0.6 0.8 1
(c) Time (sec) False Alarm Rate
0.85
O 6 semitones
os | x 10 o -
0. o 1 -
Q- d)

Area Under ROC Curve

Detection Threshold (dB)

. . . . . . . . ) PZ (semitone)
-16 -12 -2 -4 0 4 8 12 16 20
Eelative Target Level (dB)

Figure 2.4 Performance measures in Experiment 2. (a) Examms e€hit and false alarm rates
generated by varying the response window from 150 to 1050 ms after the targert lveset
example data were obtained using a PZ half-width of 14 ST and a redaje¢ [evel of +12 dB
(relative to the masker level). (b) Example ROC curve obtained by plottingriee ef hit rates
from panel a as a function of the corresponding false alarm rates. The RO§haveain gray,
was estimated using a nonparametric technique (see text for detaiBPC area as a function

of PZ half- width, and best-fitting psychometric functions. ROC areas arenxsdmsymbols; the
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best-fitting psychometric functions as lines. The different symbols andyiles sndicate
different PZ conditions (6, 10, and 14 ST). (d) Detection thresholds estimated based on the
psychometric functions shown in panel c, for the different PZ half-widths. Tévebenrs indicate

95% Cls around the mean. The dashed line indicates non-overlapped over 95% Cls.

Figure 2.5 illustrates how the ROC area varied over the time course afribristsequence,
from 150 ms after the onset of the first target tone until 150 ms after the offsetasdtttaeget
tone. The different panels correspond to different target levels (relative t@aghken from low
(left) to high (right). Within each panel, the different curves correspond to fieeedif PZ half-
widths that were tested. The different data points within each curvemamceo ROC areas
based on pairs of hit and false-alarm rates computed using increasingseegpoedow durations
(in 50-ms increments). The ROC area generally increased over time fajltve introduction of

the target tones;(18, 3040) = 100.1H < 0.001n2 = 0.37. This effect became more marked as
the PZ became widelF(36,3040) = 2.52p < 0.001n2 = 0.03 and as the level of the target tone

was raised from 4 dB below, to 12 dB above, the masker le{#2,3040) = 1.83p < 0.001n3

=0.04.
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Figure 2.5 Area under the ROC curve as a function of time after targgtioisxperiment 2.
The different panels correspond to different target levels (relative to tieemarom low (left)

to high (right). The error bars are standard errors of the mean acrgssesaibns.

Figure 2.6 illustrates the influence of the target repetition rate oatidet@erformance. These
data were obtained using a target level 4 dB below the masker level. Thendififee styles
indicate different PZ widths. As can be seen, the ROCveasdarger at the largest (14 ST) PZ

half-width than at the two smaller widti§2,27) = 8.58p < 0.01n2 = 0.39and it increased

with target repetition ratés(2,27) = 4.35p < 0.05,n2 = 0.25.
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Figure 2.6 Area under the ROC curve as a function of target repetitgoim taxperiment 2. The
different line styles indicate different PZ widths. The error bars detanidard errors of the

mean across daily sessions.

32

www.manaraa.com



2.4.2 Discussion

The effects illustrated in Figure 2.4 are qualitatively consisteiht @drlier results in the human
psychoacoustics literature, which show improvements in thresholds (Richardg&2086) or

d’ (Micheyl, Shamma et al., 2007) in a task involving the detection of regularlytirepeaget

tones among randomly varying masker tones, as the width of the PZ aroundehtotarg

increases. However, there are some noteworthy differences betweerré¢hddta and human

data. For instance, Richards and Tang (2006) observed threshold improvements of 10 dB or more
as they increased the half-width of the PZ around 1 kHz target tones from 20 to. 3836k

values correspond to half widths of approximately 0.34 and 5.2 ST, respectively. These value

are substantially smaller than those used in the current study (6-14 ST)jmgdicat the ferret

needed substantially larger PZ widths than human listeners in order to deteahtotees.

It is important to acknowledge that although the results have been discussed in terms of
informational masking, a possible contribution of energetic masking cannot be aynplet
eliminated. With the moderate stimulus level (50 dB SPL per tone), and widetpderene

widths (12, 20, and 28 ST) used in this experiment, the contribution of energetic masking would
probably have been minimal in humans, because even the smallest (12-ST) PZ neigghlis

ten times the equivalent rectangular bandwidth (ERB) in normal-heariegdrst(Moore, 2003).

As mentioned above, in the various animal species in which auditory-filter bandwidthsdesave
measured behaviorally, these bandwidths have been found to be somewhat larger than in
humans. However, for energetic masking to significantly limit the detecfithe target tones in

the current experiment, which involved PZ widths of one octave or more, frequeratividgle

would have to be considerably less in ferrets than in humans.
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The increases in ROC area over time following the onset of the stimulus sequbiuh were

seen in Figure 2.5, are qualitatively consistent with the results of psychegdhstsdies in

humans, which indicate that the target tones become more detectable oweithiméhe course

of the stimulus sequence (Gutschalk, Micheyl, & Oxenham, 2008; Kidd et al., 2003; Michel,
Shamma et al., 2007). This effect may be related to the phenomenon known as the “build-up of
segregation”, whereby the probability of hearing a sequence of altert@tgmas two separate
streams instead of a single coherent stream increases gradually y@val seconds) following

the stimulus onset (Anstis & Saida, 1985; Bregman, 1978; van Noorden, 1975). The increasing
probability of detecting the target tones amid the randomly varying masikgrbe related to
increasing segregation of the target tones from the background tones overaméhiBrpoint

of view, the present findings suggest that stream segregation takes sonmef@imets, as it does

in humans. However, because the changes in ROC area shown in Figure 2.5 occurred over
approximately 1 s, this effect can also be explained in terms of response time-sgadafically,
decision time—without necessarily implicating the build-up of stream gatjoa. The animal

may have needed more time to respond in conditions in which the target tones wertoharder
detect. Thus, the trends observed in Figure 2.5 could be reproduced, for instance,usyoa diff
model of response time in which noisy sensory evidence accumulates toward a bound, and the
rate of accumulation is determined by the strength of the sensory evidenc®atcliff, Van

Zandt, & McKoon, 1999). These trends could also be accounted for by probability-summation or
multiple-looks model (Green & Swets, 1966; Viemeister & Wakefield, 1991), in which the
probability of correct detection increases with the number of signals. Thus ddt@sdo not

allow us to conclusively dissociate components of response time that are dricetate build-

up of segregation from components that are related to it.
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The decrease IROC area with decreasing target repetition rate in Figure 2.6 isaquvaly
consistent with psychophysical data in humans (Kidd et al., 2003; Micheyl, Sharama et
2007). These data show a decreas¥ &s the target presentation rate decreased from 16.7/s to
5.6/s, a range that partially overlaps with that tested in the ferret (11.1/ssfo B.3imilar effect
was observed by Kidd et al. (1994), who measured masked detection thresholdeaattier t
These authors found that thresholds for the detection of 4 or 8 tone bursts inside a randomly
varying multi-tone background improved by about 15 dB as the interval between consecutive
target bursts decreased from 400 ms (which in that study yielded a target2.&ts)ofo 50 ms

(a rate of 9.1/s). However, the trend illustrated in Figure 2.6 may also benexidbgi an

increase in detectability of the target tones as a function of their numbezfeat discussed in
the preceding paragraph, and consistent with probability-summation or multipleshoolets.

This is because, in the current experiment target sequence length was kigpit cmaiependent
from tone repetition rate, so that the total number of target tones in the stiegiense

increased with the repetition rate. However, this probability-summation aphattioks models
explanation is contradicted by Kidd et al.’s experiments (2003) in which they usiéat si

stimuli to those in experiment 2, except for the masker components being synchraheeciv
target tone. They compared the target detection threshold under differenioepatés, but

with the number of target tonéged They found that thresholds decreased with increasing rates,
a finding inconsistent with a simple version of multiple-looks model, but instead in fasor of
perceptual segregation of the signal from the masker. Accordingly, ibisi@igely that the

effect seen in our experiment is purely due to probability-summation or midttgie models.
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2.5 General Discussion

The results indicate that the behavioral performance of ferrets in two ayskt@eption tasks,
which have been used to measure auditory streaming in humans, varies as a fundtmhusf st
parameters in a way that is qualitatively consistent with the human datdicafigcin
Experiment 1, higher performance and lower thresholds in the detection of frequéiscy shi
between targets tones at a given frequency were observed when temptedégaved tones
(interferers) were either absent, or at a remote frequency, comparedittheheterfering tones
were closer in frequency to the targets. This finding is qualitatively ¢ensisith the human
psychophysical data of Micheyl, Carlyon et al. (2005), which were explainedutsngefrom
stream segregation allowing listeners to attend selectively to tiet tanes. Selective attention
to the target sounds presumably allows the characteristics of these soundsde.or, pi
loudness) to be perceived more acutely, while other background sounds are ans$yzed le
thoroughly by the auditory system. Accordingly, thresholds for the detectioncandisation of
changes in the frequency (subjectively, pitch) of the B tones are expetiedinaller under
stimulus conditions that promote stream segregation between the A and B tonesrddse in
performance in the target-frequency discrimination task with incrg#sid frequency
separation is consistent with stream segregation becoming easier aB finegliency separation
increases. The finding of increasing performance, and decreasing ttisestith increasing size
of the protected width in Experiment 2, where the task was to detect reguladyimgparget
tones among randomly-varying masker tones, is also consistent with psychaptigta in
humans (Micheyl, Shamma et al., 2007). Here the effect has been interpreted iag fesunt
wider frequency separations between the target and masker tonesifagilitatperception of

the target tones as a separate stream.
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While we cannot ascertain that the ferrets experienced the stimuli inethtis@ments in the
same way as humans do, the finding of similar trends in behavioral performanceeisoa fof
stimulus parameters in the two species indicates that the perceptual drgamikzthese stimuli
varies in qualitatively the same way in the animals as it does in humans. Atinérse, the
present data indicate important quantitative differences in the way in whichmparice, or
thresholds, in the two considered tasks vary as a function of stimulus parametestsrafel
humans. In general, the ferrets needed larger frequency separations imeErpériand larger
protected-zone widths in Experiment 2, in order to be able to perform the tasks above chance
Moreover, even under the most favorable stimulus conditions (i.e., very largebkpect
separations), performance in the ferrets was still well below cedimdythresholds were still
considerably larger than those measured in humans. This cannot be due solely to insufficient
training, because the ferrets received fairly extensive training, aratiped these tasks or a
simpler version of them repeatedly over the course of several months. This Stigafetstese
tasks are intrinsically difficult for ferrets. A likely reason for tisigshat both tasks require
selective attention, in addition to basic auditory detection and discriminatiaeabguch as the
ability to discriminate the frequencies of tones. Thus, while behavioral shaliefound that
the performance of various animal species in basic auditory detection or ghatiomtasks can
equal and sometimes exceed that of humans, these studies almost invariably pisedtanuli
than those used in the experiments described here. Importantly, both of the taskeethaede
in this study required from the animal that it be able to sustain selectinBaatt® a subset of
stimuli within a sequence of sounds that contains other, irrelevant sounds. Unforiisuatiels
selective-attention ability is required, to some extent, by any task thaett@imeasure

performance in separating auditory streams.
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Two limitations of the present study must be acknowledged. Firstly, while tleensatif results
that were observed as a function of stimulus parameters in both experiments are
qualitatively consistent with those that have been observed and attributed to atidisonyrsy

in comparable experiments in humans, there remain numerous other parametersretiose di
indirect effects on streaming need to be investigated. For example, it is asbatrssdective
attention plays a key role in task performance in both of our tasks here, but it is ef cours
difficult to assess precisely the role it plays in determining experitt@négholds. Instead, we
are aware that it is extremely difficult, if not impossible, to measureayditream segregation
without involving some form of selective attention. In audition, as in vision, the abilétend
selectively to certain dimensions or features of a stimulus is cladated to, as well as
constrained by, perceptual grouping. Conversely, attention can influence auddanyisg—
although the extent to which it does is still debated (see Carlyon, Cusack, Foxton, &&ugber
2001; Sussman, Horvath, Winkler, & Orr, 2007). Selective attention in frequency or some other
sound dimension almost certainly played a role in previous behavioral measuresarfaudi
streaming as well. Nevertheless, we believe that, to the extent tipstytttophysical results
that have been obtained using comparable stimuli and tasks in humans are relatedrto audit
streaming (which, introspectively, they appear to be), the observation ofrsnerilds in
performance as a function of various stimulus parameters in an animal is adjcation that

the animal is experiencing a similar perceptual phenomenon.

A second limitation of the current study, which future studies should aim to overedates to

the fact that in both of the two tasks that were used in this study, streanategre@s

beneficial to performance. It is known that auditory streaming depends owelistmtention or
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“attentional set”. In particular, the A-B frequency separation required fistener to experience
two streams is smaller if the listener is actively trying to heardeparate streams than if the
listener is trying to “hold on” the percept of a single stream for as longssshe (van Noorden,
1975, 1977). Therefore, an important goal for future studies is to measure animalshaeckr
in tasks that promote stream integration, rather than segregation. Such taskisdaalyebeen
devised and tested in human listeners. In particular, performance in tasks inistbiers have
to judge accurately the relative timing of sounds within a sequence appears tmatcdity
affected by factors that promote stream segregation, and prevent sttegration. For instance,
thresholds for the detection of a shift in the timing of the B tones relative to theredin
adjacent A tones in a repeating AB or ABA sequences have been found to be silipdtayitex
when the A and B tones are widely separated in frequency, and are perceivedaas sepa
streams, than when frequency separation is small, and all tones are heardofabh@adme
stream (Micheyl, Hunter, & Oxenham, 2009; Roberts, Glasberg, & Moore, 2002, 2008nYliege

Moore, & Oxenham, 1999).

The development of behavioral tasks, which can be used to induce an animal to experience one
of two bi-stable percepts (e.g., hear a sequence of tones as one stream orraanvg), stnd to
indirectly verify that this percept was actually experienced througbrnpeahce measures, has
potentially important implications for studies of the neural correlates oéperal experience
(Logothetis & Schall, 1989). Over the past decade, a rapidly increasing nunsbedies have

been devoted to unraveling the brain basis and neural mechanisms of auditory streéiomforma

in both humans and animals (for reviews, see Carlyon, 2004; Micheyl, Carlyon et al., 2007,

Snyder & Alain, 2007). In particular, recordings of neural responses to alberbatie
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sequences similar to those used in studies of auditory streaming in humansrted¢cstaveal
potential neural correlates of auditory streaming at the single-unit{Bee & Klump, 2004;
Elhilali et al., 2009; Fishman et al., 2001; Itatani & Klump, 2009; Kanwal et al., 2003; Micheyl
Tian et al., 2005; Pressnitzer et al., 2008). However, the conclusions of these studiatedre |
by the lack of behavioral data on auditory streaming under directly comparahlist

conditions, in the same species. Therefore, the two tasks described here couphpraviarly
useful in investigations into the neural basis of auditory streaming in animpkticular, one
advantageous feature of randomly varying multi-tone stimuli such as those uspdrimert 2

is that they can also be used to measure spectro-temporal receptiveefeeldidrefia,
Gourévitch, Aizawa, & Eggermont, 2006; Norefa, Gourévitch, Pienkowski, Shaw, &

Eggermont, 2008).
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Chapter 3 Temporal Coherence in the Perceptual Organizationrad Cortical

Representation of Auditory Scenes

The material contained in this chapter is published as M. Elhilali, L Ma, C. Micheyl, A.J.
Oxenham, and S.A. Shamma. (2009) Temporal coherence in the perceptual organizat
and cortical representation of auditory scenes. Neuron. 61: 317-29. The firstre authors

contributed equally to this paper. Here, | only included the part contrituted by me.

3.1 Introduction

When listening to someone at a crowded cocktail party, or trgifgllow the second violin line
in a symphonic orchestra, we rely on our ears’ and brain’s edinaoy ability to parse complex
acoustic scenes into individual auditory “objects” or “streamsiffjteis and Warren, 2004). Just
as the decomposition of a visual scene into objects is a challesgihignathematically ill-posed
problem, requiring both “top-down” and “bottom-up” information to solve (Ma#883; Zeki,
1993), the auditory system uses a combination of acoustic cues andxmpéoience to analyze
the auditory sceneA simple example of “auditory streaming” (Bregman, 1990; Carl2004)
can be demonstrated and explored in the laboratory using sound sedikenttexse illustrated
in Figure 3.1. These sequences are produced by presenting twofalfésrent frequencies, A
and B, repeatedly (Figure 3.1A). Many psychophysical studies Hamensthat this simple
stimulus can evoke two very different percepts, depending on thaefiey separatiomyF,
between the A and B tones, and the time intetwil between successive tor(sr a review see
Bregman, 1990). In particular, whevf is relatively small (< 10%), most listeners perceive and

describe the stimulus as a single stream of tones altegnatifrequency, like a musical trill.
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However, whenAF is large, the percept is that of two parallel but separagams, each
containing only tones of the same frequency (A-A- and B-B-) -sspplementary materials for
an auditory demonstration. The perceptual separation of sound componentstimtd streams

is usually referred to as “stream segregation”; the conversee$s is variously known as
“stream integration”, “grouping”, or “fusion”. Manifestations of audjt@treaming have been
observed in various non-human species, including birds, fish, and monkeys,tisggtes

streaming is a fundamental aspect of auditory perception, which plagke in adaptation to
diverse ecological environments (Bee and Micheyl, 2008; Fay, 1998, 200 elual., 1997,

Izumi, 2002; MacDougall-Shackleton et al., 1998).

Frequency Frequency

B B
AF[
A A A

Time Time

Frzquency
'y

Time
Figure 3.1 Schematic spectrograms of stimuli used to study the perceptuatidarof auditory
streams(A) The typical stimulus used in the vast majority of psychophysical and physallogi
studies of auditory streaming: a sequence of tones alternating betweeaguenfries, A and B.
The percept evoked by such sequences depends primarily on the frequency sepanaten be
the A and B tones\F, and on the inter-tone interval]: for smallAFs and relatively longaTs,

the percept is that of a single stream of tone alternating in pitch (ABABIgrigeAFs and

relatively shoriATs, the percept is that of two separate streams of tones of constant pch (A-
vs. B-B).(B) A variation on the traditional stimulus, used in this study: here, the A and B tones
are synchronous, rather than alternating. Such sequences usually evoke fiteoparsmgle

stream, regardless aF andAT. (C) An alternating sequence of tones thaiastially-
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overlapped (40 ms onset asynchrony or about 50% ovefldg sequence is usually heard like

the non-overlapping tone sequence (Figure 3.1A above).

Inspired by the observation that frequency-to-place mapping, or &pyiotis a guiding
anatomical and functional principle throughout the auditory system (Bggé 2001; Pickles,
1988), current models of auditory streaming rely primarily on frequeseparation for sound
segregation (Beauvois and Meddis, 1991, 1996; Hartmann and Johnson, 1991; McCabe and
Denham, 1997). These models predict that consecutive sounds will be groupsatyadly into

a single auditory stream if they activate strongly overlapgmgptopic “channels” in the
auditory system. In contrast, sounds that have widely differentraped! activate weakly
overlapping (or non-overlapping) channels, and be perceptually stgte@a., heard as
separate streams). In this way, models based on tonotopic sepeaatiaocount for behavioral
findings that show an increase in perceived segregation with snegefrequency separation
(Hartmann, 1991). By additionally taking into account neural adaptation farvdard
suppression of responses to consecutive tones, these models cancalsbfacthe influence of
temporal stimulus parameters, such as the inter-tone intertia¢ time since sequence onset, on
auditory streaming (Beauvois and Meddis, 1991, 1996; Bee and Klump, 2004, 2005;nFethma
al., 2004; Fishman et al., 2001; Hartmann and Johnson, 1991; Kanwal et al., 20Qa&eMéand

Denham, 1997; Micheyl et al., 2007b; Micheyl et al., 2005; Pressnitzer et al., 2008).

Although tonotopic separation is important, it is clearly not the deferminant of auditory

perceptual organization. Another factor is the relative timing of sounds. Soundsuthandtend

at the same time are more likely to be perceived as a&swght than sounds whose onsets and
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offsets are staggered by several tens or hundreds of millise@@andgin and Carlyon, 1995a).
Accordingly, if the AB tone pairs were presented synchronof@syin Figure 3.1B) instead of
sequentially (as in Figure 3.1A), they might form a single gut@l stream, even at large
frequency separations. This prediction poses a serious problem fty fmnetopic models of
auditory streaming. Unfortunately, nearly all perceptual stunfiesiditory streaming so far have
used strictly sequential, temporally non-overlapping, stimuli uffeig3.1A), although one
informal description of an experiment involving partially overlappitigngi exists (Bregman,
1990, p. 213). On the physiological side, it is unclear how synchronysaffearal responses in
the primary auditory cortex (Al), where previous studies havatiitexd potential neural
correlates of auditory streaming using purely non-overlappimgusti(Fishman et al., 2004;
Fishman et al., 2001; Gutschalk et al., 2005; Kanwal et al., 2003; Miehal/ 2007a; Micheyl
et al., 2005; Snyder et al., 2006; Wilson et al., 2007). The complexity ofogudiortical
responses makes it difficult to predict how responses of singlenidd will be influenced by
stimulus synchrony: depending on the position of the tones relatihe tanit's best-frequency,
responses might be facilitated (i.e. enhanced), inhibited ¢deiced), or left unchanged by the

synchronous presentation of a second tone within the unit’s excitatory recegdtive fi

Psychoacoustic findings reveal that synchronous and non-synchronous sound eseguenc
perceived very differently, with synchronous tone sequences ksaadsingle stream, even at
very large frequency separations. Here we present physialdgidings, which show that the
synchronous and non-synchronous tone sequences evoke very similar tonotiaittol
patterns in Al. Together, these findings challenge the current view that tons¢pgi@tion in Al

is necessary and sufficient for perceptual stream segregatiore Nenerally, the present

44

www.manaraa.com



findings suggest that the principle of grouping information acsessory channels based on
temporal coherence may play a key role in auditory perceptual pagjani, just as it is proposed

for visual scene analysis (Blake and Lee, 2005)

3.2 Methods

3.2.1 Experimental Design

The stimuli were sequences of A and B tones, where A and Bsegprdifferent frequencies as
illustrated in Figure 3.1. Both alternating (non-overlapping andigligroverlapping) and
synchronous sequences were used (see details belo#xperiment [,Tones A and B were
shifted equally in five steps relative to a unit's best frequdiBF, the frequency which a unit
most responds to) as shown in Figure 3.2A, with tone B starting &Rlaad tone A ending at
the BF.AF between the tones was 0.25, or 0.5, or 1 octave, which was fixed withal and
varied among different trials. The total number of conditions was 4to$tions x 3AF x 3
modes). InExperiment Iltone A was set at the BF of the isolated unit, while tone 8 pleced
to £1/3, £2/3, 1, 1.5, and £2 octaves away from tone A if applicablédlustrated in Figure
3.2B. The stimuli also included a single tone sequence to measureghency tuning of the

unit.

In both experiments | and Il, each trial included 0.4 sec pre-stgmsilence, 3 sec stimulus
length, and 0.6 sec post-stimulus silence. Tone duration was 0.075|sdm©.005 sec onset
and offset ramps, and an inter-tone gap of 0.025 sec in the aligreetjuence and 0.125 sec in

the synchronous sequence. For the overlapped sequences, the toneyonkedraswas 40 ms
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(i.e., 50% overlap between the tones). All conditions were presentedopsawdomly 10 times

at 70 dB or at about 10 dB above threshold of the isolated units.

3.2.2 Data Analysis

For each unit and each condition, period histogram was constructed fragardséimulus time
histograms (PSTH) by folded (averaged) responses to the twe dgaethe duration of the trial
from 0.6 to 3 sec after the onset of the stimuli. Examples of iesgfonse histograms from a
single unit the stimuli of Experiments | are shown in Figure Ahd Al1.2 in Appendix 1. For
each stimulus response, we excluded the first 0.6 sec so asdadaptation effects. The mean
firing rate (spikes/sec) was computed by taking the avevagiee of the period histogram
(averaged over 0.2 sec). The overall firing rate patterns wbtained by averaging the
normalized responses from all isolated units. In order to compefainherent differences in
the relative strength of tone responses across units, firiag wadre first normalized by dividing
them by the maximum rate at eask and at each stimulus mode in experiment | and by the

mean firing rate at BF in experiment II.

The magnitude of dip was determined according to the following equation:

(Side — Center) / (Side + Center) %
where ‘Side’ is the maximum response at either of the “B¥s’s(position 1 or 5); and ‘Center’
is the minimum response at any of the non-BF sites (positions 2, 3 or 4).
To measure the effective bandwidth of interaction between tonesndha firing rate at the
frequency closest to BF (i.e., 1/3 or -1/3 octave) was compaitd tinose at the other

frequencies on the same direction (i.e., below BF or above BF). €haefmcy showed the
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significant difference (two-tailed t-test, P < 0.05) in meaindirate from the frequency closest

to BF was the effective bandwidth of interaction.

3.3 Results

The psychophysical results raise the question of whether neupanses to sequences of
synchronous and sequential tones in the central auditory systemirdiffevay that can account

for their very different percepts. To answer this question, we peefbrtwo experiments in
which we recorded the single-unit responses in Al to sequencesasuttiose illustrated in
Figure 3.1 in the awake (non-behaving) ferret. In the first éxget, we explored directly the
extent ofsegregatiorbetween the responses to the A and B tones. In the second experieent, w
assessed the range of frequencies over which the iteeacted(or mutually influenced their

responses).

3.3.1 Experiment I. Segregation Between Two-tone Responses

This experiment examined the distribution of responses to the twe tyné&anslating them
together,relative to the best frequency (BF) of an isolated single aniliof awake ferrets in
five steps (labeled 1 - 5 in Figure 3.2A), where positions 1 and 5sporrd to one of the two
tones being at BF of the unit. The frequency separatiéi) Ijetween the tones in each test was
fixed at 1, 0.5, or 0.25 octaves, corresponding to 12, 6, and 3 semitonestivegpeAs
described above, alternating tone sequences are usually perasiwgo streams at separations
of 12 and 6 semitones (1 or 0.5 octaves), but are only marginatggsegd at a separation of 3
semitones (0.25 octaves). In contrast, synchronous tone sequences & ledard as one

stream. Therefore, if the “spatial segregation” hypothesis walid, alternating sequences
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should evoke well-segregated neural responses to the far-apart tones (1 and G} odtaveas

synchronous sequences should evoke spatially overlapping responses in all cases.

(A) (E)

Tone A Tone B position Tc;reB T::neA. . . L
| _aF=c25 051 ] 1 (fcne B at BF) { AF=-1/3,-2/3,-1-15,-2 | |
I il . =8 neee

E E 2 = H =
O . Qi 2:1 15 2
: : 3 BF
: : AF (octave)
: : 4
5 (tcne Aat BF)
Q
BF
AF (octave)

Figure 3.2 Schematic of the tone frequencies and conditions used in the physiological
experiments. Both alternating and synchronous tone sequences were testeohiditabins. (A)
Experiment I: The two-tone frequencies we held fixed at one of three istapalt AF = 0.25,
0.5, 1 octaves), and they were then shifted through five equally spaced positions teethive
BF of the isolated cell. (B) Experiment II: Tone-A is fixed at the BF ofgbkated unit, while

tone-B is shifted closer to BF in several steps.

The results from a population of 122 units in the Al of 4 ferreésstwown in Figure 3.3. In
Figure 3.3A, the average rate profiles for the synchronous, opertapand alternating
presentation modes are constructed from the responses as desctibedviethods. All 122
units were tested with the synchronous and alternating modes; 75/12%ere also tested with
the overlapping sequences. When the tones are far apart ( octave; right panel of Figure
3.3A), responses are strongest when either tone is near BF (po&itaord 5); they diminish
considerably when the BF is midway between the tones (position®)esting relatively good
spatial separation between the representations of each tone. Wheneaheare closely spaced

(AF = .25 octave; left panel of Figure 3.3A), the responses remaitivedy strong at all
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positions, suggesting that the representations of the two tonesolmeell separated. More
importantly, the average rate profiles are similar for als@ngation modes: in all cases the
responses are well-segregated with significant dips when the aoadar apartAF = 1 octave),
and poorly separatead dips) when the tones are closely-spac&éB € 0.25 octaves). Thus,
based on average rate responses, the neural data mimic theipercefite asynchronous but
not the synchronous tone sequences. Therefore, the distribution ofeavat@gesponses does

not appear to represent a general neural correlate of auditory sgeamin

Instead of averaging the responses from all cells, we tabulsetumber of cells indicating a
significant segregation in the responses (implying a perceptsteams) or no segregation (a
percept of 1 stream) by examining whether a significant dip occurred in déslpredile during
the two extreme presentation modes (synchrowveususalternating tones). The determination
of a dip was derived for each condition by finding a significant idiffee (one-tailed t-test; P <
0.025) between the distributions of the maximum response at eithiee OBF sites” (1 or 5)
compared with the minimum response at any of the non-BF sites (28,For the purposes of
this analysis, we used a population of 66 units for which positionsSlware “BF sites”, and
measurements were completed at all positions (1-5). In mostimeoes, several units with
diverse BFs were recorded simultaneously with multiple electrodied hence it was only
possible to match the tone frequencies to the BF of one or two aklise The percentage of
cells with a significant dip in their profiles is shown in tistograms of Figure 3.3B. We also
calculated the magnitude of the dip (see Method) for each unit, taidigsed that there was no
significant difference in neural responses between synchronousltanthing modes (two-

tailed t-test, P = 0.54 at 0.25 octave, P = 0.37 at 0.5 octave, and P % 0.42tave), and that
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spatial segregation increases significantly with increasihgone-tailed t-test, shown in Figure
3.3B). The results show that (1) segregation is strongest at 1 eefpasation, and weakest at
0.25 octaves, and that (2) there is little difference between dtierps of responses to the
synchronous and alternating sequences. Thus, this alteriadivalual-cell response measure

also fails to predict the different streaming percepts of the alterratshgynchronous tones.
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Figure 3.3 Responses of single-units to alternating (non-overlapping arailypasterlapping)
and synchronous two-tone sequences at three different intenfaks Q.25, 0.5, 1 octaves). The
two-tones were shifted relative to the BF of the cell in five equal steps, frorBtbamg at BF
(position 1) to tone-A at BF (position 5), as described in Experiment | paradigrAvédage
firing rates from a total of 122 single-units in the five frequency positions irytiehonous and
non-overlapping modes. Overlapping tones were tested in only 75/122 units. Responses in all
presentation modes exhibited a significant dip in response when tones were fathé.& and
1 octaves), and neither was at BF (shaded positions 2-4). (B) The percentagetbétell
exhibited a significant dip in their responses were similar in the two exfpeesentation modes
(synchronous and non-overlapping alternating). Only the 66 single-units thatstext at all
five positions were included in this analysis (since responses from all positeonecessary to
compile such histograms). The magnitude of dip showed significant difference aérdsst

nonsignificant difference across presentation mode.

3.3.2 Experiment II: Frequency Range of Interactions

The key question of interest in this experiment was whetheatigerof interactions between the
two tones was significantly different in the three presentatiodes (alternating, overlapping, or
synchronous). We measured the frequency range of interactionselpetine two tones by fixing

tone A at the BF of the isolated unit, while placing tone B at +1288,#1, £1.5, and +2 octaves
around the BF (Figure 3.2B). We also estimated the unit’s freguenmg by measuring the

iso-intensity response curve with a single tone sequence (blac& tuiFigure 3.4A). Other

methodological details can be found in the Methods.
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The average spike counts are shown in Figure 3.4A from a population wig! units (in the
synchronous and alternating modes) and 41 units (overlapping mode) dhatrecorded
separately from Experiment |. All data were combined by computiegso-intensity response
curve of each unit, centering it around the BF of the unit, and normaltznygthe response of
the unit to the single BF tone. We then kept only the half of the tuninge above or below the
BF from which the full 2 octave range was tested. Such (half-tusumyes from all units were
then averaged for each condition. The results highlight the ititerambserved as the tones
approached each other in frequency. For instance, when tone Br/asifdone A at BF (e.g.,
at + 2 octaves), the effects of the B tone on the cell aagwely small and the firing rate in all
modes was similar to that of the single tone at BF (the nazethliate of 1, indicated by the
dashed line). As tone B approached BF, the responses become modukitel@écfeasing and
then increasing steeply beyond about 1 octave on either side of tAg8rt from differences in
absolute firing rates, the pattern of interactions was sinmlatl three presentation modes. For
example, the frequency separations at which significant ini@nacensue are similar, implying
that the units’ receptive fields (or their tuning curves) amalar whether they are driven by

synchronous, alternating, or partially overlapping sequences.

To further quantify the population responses, we computed the effectivdwiodh of

interactions for each unit, defined as the furthest frequency orr sittee of the BF at which
response interactions between the two tones were significanM@tbeds). The data from all
units in the synchronous and alternating (non-overlapping) modes ar@ydmh the histogram
of the differences between the two measured ranges in Figure BiBscatter is mostly

symmetric, with a mean not significantly different from z@veo-tailed t-test, P = 1). Hence, the
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bandwidth differences for individual units fail once more to accoamthe different streaming
percepts evoked by the alternating and synchronous presentation. t8odiggr comparisons
were also performed for the overlapping vs. synchronous and overlappingrsataly modes.
The bandwidth differences in both cases were also mostly symomefth a mean not

significantly different from zero.

A

1
2
&
2 1R
K= 5
i ) B
i
ié 09 o p=-0.0003
g > B-alone 02=0.2
3 2 20 (N=64)

0.8 o 8 Sync | [N=B4) <

Y —m— Alter 5
2 —A— Over  (N=41) * 10
0.7 % 4
Y =k 0 1
0 05 " 15 o Bandwidth Differences:

Oclaves from BF (JA4F]) EVHSIE B OIS

Figure 3.4Averaged responses from a total of 64 units tested for alternating, synchronous and
overlapping (tested in only 41/64 units) sequences using the paradigipesiment Il (A) The
tuning near the BF averaged from all units. The average iso-intensity resuows is shown in
black for comparison. To increase the number of cells included in the averagejedetia
responses from above and below BF, but included only units that were tested with éh2 entir
octave range from BF. All presentation modes show some suppression of responseé as tone-
approaches the BF (1 to 1.5 octaves), and a significant increase closer to BA @tiaug;

marked by the asteriskgB) Histogram of the difference in bandwidth of interactions between
the tones during the two extreme presentation modes (synchronous and aljeisedinghly

symmetric indicating no systematic bias in the scatter.
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3.4 Conclusions

The results from the two physiological experiments in awaketiercontradict the hypothesis
that segregation of Al responses to two-tone sequences is esuiffioi predict their perceptual
streaming. Instead, our findings reveal that synchronous and non-synchsexqoesces do not
differ appreciably in the spatial representations of their teatlgesiveraged responses in Al,
despite the substantial differences in their streaming pstcéfiearly a model that is
successfully able to predict perception from these neural ddtaesd to incorporate the time

dimension.

3.5 Discussion

3.5.1 Evidence against a purely tonotopic or “spatial” model of auditory streaming

We examined the hypothesis that acoustic stimuli excitingadlyasegregated neural response
patterns are necessarily perceived as belonging to diffeerceptual streams. This “spatial”
hypothesis underlies (explicitly or implicitly) previous inteatens of the neural correlates of
streaming in the physiological investigations and the computational Isn@destreaming
(Beauvois and Meddis, 1991, 1996; Bee and Klump, 2004, 2005; Fishman et al., 2004nFishma
et al.,, 2001; Hartmann and Johnson, 1991; Kanwal et al., 2003; McCabe and P&aB@m
Micheyl et al., 2007b; Micheyl et al., 2005; Pressnitzer et al., 2008).dDthe elegant aspects
of the “spatial” hypothesis is that it can be generalized ¢dipt that separate streams will be
perceived whenever sounds evoke segregated responses along Hrey representational
dimensions in the auditory cortex, including not just the tonotopic axigléoita fundamental-
frequency (FO) or “virtual pitch” axis (Bendor and Wang, 2005, 2006; Guksehal., 2007), as

well as, perhaps, temporal- and spectral-modulation-rate axesddBeand Wang, 2007;
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Kowalski et al., 19964, b; Schreiner, 1998; Schreiner and Sutter, 1992; 30@&r,Versnel et
al., 1995), thereby accounting for psychophysical findings of stregmegaion induced by
differences in FO or modulation rate in the absence of tonotopic(Gsesault et al., 2002;

Roberts et al., 2002; Vliegen and Oxenham, 1999).

However, the experimental data reported here cast doubt on theyvafidih explanation of
auditory streaming in terms of neural-response separation titmegytemporal coherence as an
important determinant of perceived segregation. Our human psychophesichs show very
different perceptual organization of synchronous and asynchronous tone ssqguérereas the
extent of segregation of the neural responses in ferret Alessesntially independent of the
temporal relationships within the sequences. This finding emphasimesfundamental
importance of the temporal dimension in the perceptual organizatiayuntl sand reveals that

tonotopic neural-response separation in auditory cortex alone cannot explain aucisomnyrsj.

3.5.2 A spatio-temporal model of auditory streaming

Our alternative explanation augments the spatial (tonotopic) gadgne hypothesis with a
temporal dimension. It is gpatiotemporalview, wherein auditory stream segregation requires
both separation into neural channatsl temporal incoherence (or anti-coherence) between the
responses of these channels. T8patiotemporalhypothesis predicts that if the evoked neural
responses are temporally coherent, a single stream is y@&tcaegardless of the spatial
distribution of the responses. This prediction is consistent with owhgphiysical findings
using synchronous tone sequences. The prediction is also consisterthavithtrospective

observation, confirmed in psychophysical studies, that synchronous kpemtngponents
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generally fuse perceptually into a single coherent sound (e.g., d wovee musical chord),
whereas the introduction of an asynchrony between one and the othponamts in a complex

tone results in this component “popping out” perceptually (Ciocca and Darwin, 1993).

The present demonstration of a critical role of temporal cohenenthe formation of auditory
streams does not negate the role of spatial (tonotopic) sepaestica factor in stream
segregation. The extent to which neurons can signal temporal incoheremss frequency is
determined in large part by their frequency selectivity. Fangle, the responses of two
neurons tuned to the A and B tones in an alternating sequencee(Bi@j&) can only show anti-
coherence if the frequency-selectivity of the neurons isivelgthigh compared to the A-B
frequency separation. If the neurons’ frequency tuning is broaderhitbdretjuency separation,
both neurons are excited by both tones (A and B), and respond in a tiynpararent fashion.
In this sense, spatial separation of neural responses along the tonotopic axiewesbaryor

stream segregation but, as this study shows, it isufitient

The principle of channel coherence can be easily extended beyondritéet stimuli and the
tonotopic frequency axis to include other auditory organizational dimenhsuch as spectral
shape, temporal modulations as well as binaural cues. Irrespefcthes nature of the dimension
explored, it is the temporal coherence between the responses thlinglimension that
determines the degree of their integration within one streansegregation into different

streams.
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Finally, there are interesting parallels between the préseimgs, which suggest an important
role of temporal coherence across sensory channels in auditoey @calysis, and findings in
other sensory modalities such as vision, where grouping based on cohefetaraporal
structure has been found to provide an elegant solution to the binding prolgern®ais et al.,
1998; Blake and Lee, 2005; Fahle, 1993; Treisman, 1999). Together, these faudjggst that
although the perceptual analysis of visual and auditory “scenes” gtdeagt, superficially) very
different problems, they may in fact be governed by common ovangrghinciples. In this
regard, parallels can be drawn between prominent characte$tauditory stream formation,
such as the buildup of streaming and its dependence on frequencytiseparad processes

involved in the visual perception of complex scenes.

3.5.3 Do percepts of auditory streams emerge in or beyond primary auditory cortex?

For neural activity in Al to be consistent with the psychophysibakrvation that synchronous
tones with remote frequencies are grouped perceptually whdmaiing tones are not, there
should be cells in Al whose output is strongly influenced by teatpmherence across distant
frequencies. While such cells are likely to be present in AffBur and Wang, 2002; Kowalski
et al., 1996b; Nelken et al., 1999), we did not systematically find mhatyeliably exhibited the
properties necessary to perform the coincidence operation. Foplexath neurons sampled in
this study followed the temporal course of the stimuli (withréased firing rates during epochs
where at least one tone was present), the responses did not unampigoucresise in the
presence of temporal coherence across tonotopic channels. Therefopmssibility is that the
percepts of stream segregation and stream integration are namideterin Al. Another

possibility is that the coincidence and subsequent matrix decompossoribegd in the model
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are realized in a different, less explicit, form. For instaitds theoretically possible to replace
the spectral decomposition of the coherence matrix by a singallag-decomposition directly
upon the arrayed cortical responses. The spectral decomposition cbhdence matrix is
equivalent to PCA analysis of the covariance matrix of the chaesgbnses. Equivalent results
can be computed by a singular value decomposition directly on the thamperal responses,
i.e., without computing the covariance matrix, obviating the need focdimeidence detectors.
This leaves open the question of how avitere in or beyond Al, the detection of temporal

coincidences across remote frequency channels is neurally implematieein| 2004).

The auditory streaming paradigm, with its relatively simple amdl-controlled stimuli and
extensively characterized percepts, may in fact provide anlexiceehicle to explore a broader
issue in brain function: that of the relationship between perceptioneamdl oscillations, which
reflects coherent responses across different regions in the G@herenceas an organizing
principle of brain function has gained prominence in recent yedhnstind@ demonstration that it
could potentially play a role in mediating attention (Lianglet 2003; Zeitler et al., 2006), in
binding multimodal sensory features and responses (Lakatos et al., 288&eder et al., 2008),
and in giving rise to conscious experiences (Fries et al., 1998s@t al., 2007; Meador et al.,
2002; Melloni et al., 2007). Our results reinforce these ideas Ipyhasizing the importance of
temporal coherence in explaining auditory perception. Specificéléy,irticlusion of the time
dimension provides a general account of auditory perceptual organizadtocan in principle

deal with any arbitrary combinations of sounds of time and frequency.
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3.5.4 Attention and the neural correlates of streaming

Interpretations of neural responses recordegassiveanimals as “correlates” of auditory
percepts are necessarily speculative, since behavioral mea$uhesanimal’s percepts during
the recordings are not available. Under such conditions, the exgpéeintan, at best, assert that
the neural responses differ across experimental conditions (efgretifstimuli) in a way that is
consistent with behavioral measurements obtained in the same (or a titheraral (or species)
under similar stimulus conditions. In this respect, the preseny stuffers from the same
limitation as previous investigations of the neural basis of audstoeaming in awake animals
that were either passive (Bee and Klump, 2004, 2005; Fishman et al. FiXlodan et al., 2001;

Kanwal et al., 2003), or engaged in a task unrelated to streaming (Micheyl et al., 2005).

The possibility remains that Al responses to alternating and symmhs tone sequences in
awake animals that are engaged in a task, which requires actitezigiing to the stimuli, might
be substantially different from those recorded in passive anirtals known that neural
responses in Al are under attentional control, and can change rapitily task changes (Fritz et
al., 2005a; Fritz et al., 2003; Fritz et al., 2005b). . Such attentiah@lgn changes in receptive
fields might differentially affect the neural responses tterahting tones and those to
synchronous tones, in a way that makes these responses more comstbtahe percepts
evoked by those sequences (Yin et al., 2007). On the other hand, the a$pstctmming
investigated here — in particular the increased segregattbningreasing frequency separation
in asynchronous conditions — have been posited to be “automatic” or “prihainee hence
independent of attention (Macken et al., 2003; Sussman et al., 2007), althoudttdras still

debated (Carlyon et al., 2001).
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The possible effects of attention could be investigated in futureestum controlling the
attentional and behavioral state of the animal. Our model postutetescistence of units that
should exhibit a dependence on temporal coherence. We have not found ssiahm Ahiand
therefore a future search may concentrate more fruitfully om,actbhpramodal, areas, such as the

prefrontal cortex, where attentional modulation of Al responses migynate (Miller and

Cohen, 2001).
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Chapter 4 A neurophysiological Evidence of Temporal Correlaion during

Auditory Streaming in Ferret Primary Auditory Corte x

4.1 Introduction

Inspired by experimental results from Chapter 3, we postulate that tempoedhtoon across
auditory channels, and not the tonotopic separation per se, is the key naetatecof auditory
streaming. According to this idea, cells which are simultaneously actikgtene sound source
(one stream), have coherent spiking activity and distinguish themselvethfseenactivated
asynchronously by other sound sources. This hypothesis requires that synaping citgrigth
between pairs of cells can be modulated at relatively faster timelsaalednventionally
assumed. That is, if the spiking activity between the two cells is synchronoagnépic
strength is increased; if the spiking activity between the two cells isla®ynous, the synaptic

strength is decreased. All are happening rapidly within a few seconds, dianfod@ second.

Recently, rapid task-related plasticity of spectrotemporal receids {STRFs, STRF of a
neuron is the linear filter that, when convolved with the auditory spectrogram dditxarsr
stimulus, gives a linear estimate of the evoked firing rate) has been deatexhst primary
auditory cortex in a series of experiments by Fritz et al (2003, 2005, 2007a, 2007&3¢ln th
experiments, animals were trained to discriminate multiple spectkal véth different tonal
targets from a sequence of temporally orthogonal ripple combinations (TORGH),axe
broadband noise bursts. In the single- (complex-) tones detection task, STieREnhanced at
the target tone frequency (frequencies). In the two-tone discriminasbnata equally selective
suppression at reference tone frequency was found in addition to the same changthseen i
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single-tone detection task, the selective enhancement at target tonedyeduat these tasks,
the target tone was placed near a cell’s receptive field and best fre§Bénclurthermore, the
task was modified to achieve a range of task difficulties (Atiani et al., 2088)target tone was
embedded in a TORC with different signal-to-noise ratio (SNR). When the tangefell near
the cell's BF at high SNR, the same enhancement was observed during béaeiotthe tone
was placed far from a cell’s BF and receptive field at high SNR, or 85N, the STRF
change became suppressive. This STRF plasticity can occur quite rapidadarguickly after

task completion; in some cases, it persisted for minutes or hours.

In the current study, we recorded spiking activity with multiple electradide the same
behaving animal described in Chapter 2 performed the streaming task ahdetegularly
repeating target tones in a random multi-tone background (maskers/disjitgelaced either
target or masker tones near a cell’'s BF. We called it a maskeritalgéimasker/target tones
were near the cell's BF (see Method for details). Following the adiaeenents, we
hypothesized that (1) during streaming in behavioral contexts, the tempoedhiton between
spiking activity from pairs of simultaneously recorded target cells (arl&nmeously recorded
masker cells) would increase since these cells will be in the same;stird(®) cells driven by
different streams (target or maskers) would have decreased or no charnrgéated spiking
activity, e.g., as from pairs of simultaneously recorded target and madkeCoehrly, the
STRF gain or shape changes should reflect these changes in correlation. ypetiinatasks,
reference stimuli are associated with the “warning” sounds when animals dekribelspout,
we anticipated that these responses would be enhanced (David et al, 2008). Therefore w

predicted that for reference stimuli during behavior, the STRFs of maslsewoeld be
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enhanced at BFs, while the STRF changes of target cells would become suppressd/et(al,

2008; Atiani et al., 2009).

4.2 Methods

4.2.1 Behavioral Task and Stimuli

The behavioral task was the same task as in experiment 2 in Chapter 2. The example
spectrogram of the stimuli is shown in Figure 4.1 below and the descriptionpease here
for convenience and completion. Some parameters were changed slightly fdecaiisi of
neurophysiology data analysis. On each trial, a sequence consisting ofertaligplpips with
random frequencies and random onset times (“maskers”) were presentedeAianmmn this
random sequence, a regularly repeating sequence of constant-frequresc{/targets”) was
introduced. The task of the ferret was to detect the target sequence arartitimaly varying
masker tones. The animal was trained to withhold licking until the target waduoéd, and to
start licking upon detecting the target. If a lick response occurred within 100 to 136tentke
onset of the first target tone, it was counted as a hit and reinforced with a 1/3 m¢iof\ases
had no consequence. In this experiment, there were no “sham” trials; the targetenes
presented on all trials. However, the start time of the target sequereskraamdomly between
900 and 2700 ms after the onset of the masker sequence. When the animal produced a lick
response before the onset of the target sequence, this was counted as afaltdeedl@al was

aborted, and followed by a short timeout.
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A

Reference Target
—

Time
Figure 4.1 Schematic spectrogram of an example stimulus presented omaBxjariment 2.
During the “reference” portion of the stimulus, only masker tones (graywginsjandom
frequencies and onsets times were presented. During the “target” gt tteres (dark bars)
repeating regularly at a constant frequency were introduced. The grareued the target
represents the “protected zone” (PZ), within which masker tones were notcatloved! (See

text for additional details).

The stimulus details were as follows. Each tone-pip (target or maskerOwas long, including
5 ms onset and offset ramps. On each trial, 7 target tones were presented. Conaggritive t
tones were separated by a silent gap of 110 ms, yielding a repetition abteuo6.6 Hz. Trial
length varied randomly between 2.16 and 3.96 s across trials. These durations include the
variable-length “reference” sequence (0.9 to 2.7 s) plus the fixed-durationt™*tsegaence. The
masker tones occurred at an average rate of 89 tones per sec. The maskartogesavated as
follows: first, eight different masker-tone frequencies were selatteandom for every 90 ms;
then, the masker tones were shifted pseudo-randomly in time, in such a way thatréhegtwe
synchronous with the target, except by chance. The masker tone frequemeielsawn at
random from a fixed list of values spaced one ST, approximately 6%, apantjiegch
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“protected zone” (PZ) around the frequency of the target tones. The half-widthRA the
determines the minimum allowed frequency separation between the target doddbkersasker
component on either side. Three half-widths were tested: small (6 ST), medidy &&large
(12 ST). Masker frequencies were selected from within a two-octage @ both sides of the
PZ. Target intensity and trial lengths varied within a session. The maskemtereepresented at
50 dB SPL (each). Target-tone levels of 0, +4, +8 and +12 dB relative to the level aistker m

tones were tested.

4.2.2 Neurophysiological Recording

To secure stability for electrophysiological recording, a stainteg$ lseadpost was surgically
implanted on the ferret’s skull. Recordings were conducted in a double-walled, sound-
attenuation chamber (IAC). Small craniotomies (1-2 mm in diameter) wete ovar A1 prior
to recording sessions which lasted 6-8 hours. We used 2-4 independently movealde tungst
electrodes separated by ~500 um from their nearest neighbor and AlphaOmegagecordi
system. The range of best frequencies (BFs) in a given experimert fvarie0-2 octaves.
During recording sessions, we stored all waveforms from each elec@ditine, we sorted the
multiunit waveforms into different single units using principal component asaysi rejected
waveforms corresponding to movement artifacts, for example, licking. In &yissmgle units,
typically 1-3 neurons per electrode, were isolated. This yielded typRdl0 single units per
recording, allowing us to examine firing synchrony (correlation) betveeeh pair of units.
Spikes were obtained by triggering at a level four standard deviations abeliedbaariation in

the raw waveform.
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On each recording day, electrodes were slowly advanced until we had iselienhall

electrodes. Then, to assess the BFs and frequency tunings of the Al neurons tt@atded,re

we measured the neuronal responses to TORCs and random tones. To make sure theHevel of B
tone was presented above the neuron’s threshold, level tuning was obtained by grBsentin

tone at different loudness. Finally, primary sets of task-relatedlstivare presented with

behavioral and passive conditions. Each set of stimuli is composed of pre (or@pcefstimuli

in Figure 4.1 presented), task stimuli (both reference and target preserntga)sa(reference

only). In the behavioral condition, the animal was required to perform the task, while in the
passive condition, the animal just passively listened to the stimuli and no behaviogweedre

Either PZ or target frequency was changed across each set.

4.2.3 Data Analysis
All false alarm trials were excluded from data analysis. Spiking daedigded into two
channels (groups) according to the position of each unit’'s BF. Units were labédededxells

(channels) if the unit’'s BF was within the PZ and as masker cells (chaatieds)yise.

4.2.3.1 Correlation Analysis

In order to measureross-correlation (coherence) between each pair of single units r@corde
simultaneously from multiple electrodes, we computed the spike-triggeredj@wenaelation
(STAC) of the spiking activity, also called cross-correlation histogr&@si), for all pairs of
spike recordings at 300 ms around all spikes recorded for each condition. Eacl{d@ TATH)
was normalized by the corresponding number of trigger spikes. If two umigstvated

synchronously, the spikes add up duringgpie triggered averaging process, resulting in a
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peak at STAC. On the other hand, if spiking activities between the pair haveahteredimporal
relation, the spikes average out during the STAC process, resulting in 8Alat $his trial-to-
trial STAC includes both signal and noise correlations. To measure signahtomelve
computed the post-stimulus time histogram (PSTH) of each unit to the stimuli and edriiyaut
STAC of the PSTH. The difference between the signal correlation andahetiial

correlation is noise correlation.

4.2.3.2 STRF Analysis

STRF for each unit was computed by reverse-correlating the spike respahsigewi

spectrogram of the stimulus and then normalized by the autocorrelation ofrthieist

(deCharms et al., 1998; Theunissen et al., 2000). The predictive power of computed STRF was
estimated by calculating the correlation between the actual and thetgdedisponses to novel
stimuli from the same ensemble. Each STRF is associated with a predictiveapolieose with

a predictive power < 0.15 were excluded from further analysis.

To measure the population effect of the steaming related task on STRF chawcgeyputed the
difference between behavioral and passive STRFs (§d)R&r each unit. After normalizing

each STREs by their individual r.m.s. power, we located the maximum point of each &TRF

in a band +4 ST around the BF of the cell and within the first 40 ms of the STRF. EaciSTRF
was aligned at the local maximum points and the average &Was obtained for each
condition. To quantify the STRf for each unit, we computed a local STRF chartggga).

We defined the local difference as the average difference within £4 ST and +26und the

local maximum points.
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4.3 Results

We recorded spiking activity from one ferret's Al, the same ferret froommie collected
behavioral data for Experiment 2 in Chapter 2. On most recording days, the fdoehpdrtwo
sessions of the repeating tone sequence detection task. We refer to this condiitadtention

as behavioral condition. In between behavioral conditions, the similar stimuleither

different PZ or target frequency were presented and the animal was juselydsdening. We

refer to this condition without behavior as passive condition and compared pooled single units

responses between the two attentional conditions.

4.3.1 Temporal Correlation

An example of STACs from four simultaneously recorded units under behavioral consliti
shown in Figure 4.2. These are STACs from responses of two masker cellodacygt cells at
PZ = 6 ST. Masker/Target cells were those in which the BFs were near fizagkétones. The
STACs of the spike trains between two masker/target cells shows a j@etakatrelative to
trigger spikes indicating synchronous firing activity between these tws; while STACs
between the masker and target cells are relatively flat that insligaterrelated firing activity
between these pairs of cells. Comparing the STACs between two maskduadelsbehavior
versus the passive state, we note that the peak of the STAC during the refgnemicbecomes
larger in the behavior condition compared to the pre-behavior period, indicating aséicre
synchronous firing activity between these units during task performance. Gognjpe STAC
during pre-task, the correlation between target cells shows no change femcefstimuli during

behavior. By contrast, there was no change in correlation between the maskegetrcbtis
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either during pre-task or task stimuli. These cells, as we discussed, @setie driven by

different stimulus streams, and had more separated STRFs than the other pairs.

Masker-Masker Par Masker—Targel Pair Targel—Targel Pair

a
—
2 05 — prz
7 == behaving
'Lj 0.4
&
A 0.3 |
3 ]
E .
:;j 0.2 ;
¥ .
£ 0 SN G
u i i i i
0.2 o n2 0.2 0 02

I— Time relative to trigger spike (3) —I

Figure 4.2 STACs of spike trains from simultaneously recorded four units: two meatlkeand
two target cells at PZ =6 ST. STACs were computed from responses tocefstiamuli. Left
panel: STACs between pairs of masker cells; middle panel: STACs betwesofpaasker and

target cells; and right panel: STACs between pairs of target cells.

According to the behavioral performance in Chapter 2, at smaller PZ, wedmmiftcantly
increased thresholds comparing with those at larger PZs, which indicapes¢bptual
difference under these two stimulus configurations. Therefore, to measure thegtipapaffect
of the streaming related task on correlation changes, we pooled data for medeng@amddth
of PZ (PZ =9 and 12 ST) and examined the correlation between spike trains tocedfarget
stimuli across pairs of cells under two attentional conditions. During themeéeséimuli in the
passive state (i.e., the pre and post-task conditions in Figures 4.3a and 4.3b), thea®&TACs
essentially similar indicating that there was little persisten@mpfchanges that might have
occurred during the task. By contrast, during behavior, most STACs from refeespoases
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displayed increased pair-wise correlations relative to the passiveionadithese behavioral
effects can be seen clearer in Figure 4.4 where we plot the diffdyetveeen STACs (STA%x)
during reference stimuli in the passive and behaving conditions. These datar@redncy of
masker cells to have significantly more correlated firing during behé&vest, p < 0.01)
compared to the passive condition. By contrast, the correlations betwslker mad target cells,
andtarget and target cells show no large or significant differences betiveéwo behavioral
conditions. Interestingly, there is also a significant peak at O-lag iarierIPZ condition,
whereas the increased correlation in the other case is primarily olagsalindicating that it
reflects a common increase in firing rates for the cell pairs. Simagaitts for STAG from

behavior versus post-behavior are displayed in Figure A2.1 in Appendix 2.
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Figure 4.3 STACs from responses to reference stimuli (a) for smallé& F and (b) for larger

PZ, 9 or 12 ST. Error bars indicate standard error (SE).
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Figure 4.4 The difference between STACs (ST#Xdrom behavior versus pre-behavior
conditions, respectively. STAf (a) at smaller PZ (6 ST); and (b) at larger PZ (9 or 12 ST).
Magenta crosses indicate significant difference (t test, p < 0.01) at eaclagrbetween two

conditions. Error bars indicate SE.

When target stimuli commence, the animal perceives two streams, targetskatsnand hence
the responses during this period reflect its perception of the two streamsyaddmunstrate
directly the changes related to auditory streaming (Figure 4.6)h&darger PZ condition, we
found that the correlation among target cells increases significatelt,(p < 0.01) during

behavior compared to the passive state. Smaller increases are also seethamasger cells
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(the other stream). Interestingly, no such increases occur between nargedsker cells.
Consequently, one can say that in this condition, cells driven by the same stpegienee an
enhanced correlation of firing, but not the ones across streams. The same paffesulisali

discern in the PZ = 6 ST cases because of the small number of targetqanisd. But note
specifically the significanlecreasdt test, p < 0.01) in correlation between masker and target
cells at PZ = 6 ST during behavior. In addition, we have found that attention not only modulated
the correlation between cells that had close or overlapping receptive fieldsdooe@veen

distantly related cells in the background stream. We computed the STAGebeahasker cells

at opposite side of PZ and the same side of PZ respectively and found that thenenwased

correlations during behavior in both cases (Figure 4.6).
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Figure 4.5 STACs from responses to target stimuli under two attentional oasdgi) for
smaller PZ, 6 ST and (b) larger PZ, 9 or 12 ST. Insets display the differenezb¢he mean
STAC at each condition. Error bars indicate SE. Magenta crosses indicéfieasig difference

(t test, p < 0.01) at the time-lag between the two conditions.
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Figure 4.6 STACs of responses between distantly/closely relatedmecatikeat larger PZ. (a)
STACs from responses to reference stimuli; (b) The difference betWwed@sIrom behavior
versus pre-behavior conditions to reference stimuli; and (¢) STACs frpongss to target

stimuli.

Finally, to tease apart the sources of the correlations, we computed signalsenconalations,
respectively, and are given in Appendix 2 Figure A2.2. In most cases, correlatiendue to
the signal rather than the noise. The noise correlations computed from respoefasoe

stimuli show no significant difference between the two attentional conditions. T$& noi
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correlations computed from responses to target stimuli show significadtige@/increased

correlations between masker cells at smaller/larger PZ.

In summary, during behavior, the STACs from responses to reference stimuli shtve tha
correlations between masker cells are enhanced relative to the passiveha& TACS from
responses to target stimuli (when both the target and maskers are present, butafefaous

is on the target), correlations between target cells (and to a lessdrartsng masker cells) are
significantly increased, while those between cells belonging to the oppos#ms (masker and
target cells) are reduced or unchanged compared to the passive condition. Jiiesare

consistent with the assumptions of the coherence model that we describe intdetalil la

4.3.2 Rapid STRF Plasticity

How are the correlations among different cell types related to the chesges their receptive
fields during behavior? Here we examine examples in Figure 4.7 of maskergatidéds for
the 6 ST task. It is clear from raster and PSTH plots that the spiking astvitmasker/target
cells are driven by the masker/target tones. The target tones were pla@ggin the middle of
the PZ. We computed reference-STRF from responses to reference stonalstént with the
increased correlation among masker cells in the reference epoch during béfiguiar 4.3 and
4.4) , we found that the masker cell’s reference-STRFs were enhanceaailyifduring
behavior, but reverted back to pre-behaivor shapes afterwards. By contrastedsd€&igures
4.7c and 4.7d) experienced a relative “depression” in their reference-STRiks lamavior
relative to the passive. These cells also do not show a significant or laepgesenan correlation

among them or with masker cells during the reference period of the behavigredhmles of
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masker/target cells at 9 ST PZ demonstrate similar effects asah®<&T PZ (see Figure A2.3

2).
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Figure 4.7 Examples of single units’ raster plot, PSTH plot, and STRF at 6 ST) Bdd (@) are

from masker cells. (c) and (d) are from target cells. The areabetiwo black dash lines

represents PZ.
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To examine the population effects of rapid STRF plasticity in streamiaigdeiask, we pooled

in Figure 4.8 all units according to the stimulus conditions and computed the average STRF
difference between the behavior and pre-behavior states by aligeim&€RFi¢ to its unit’s

BF (see Methods for details). Those STRFs were computed only from resporesesstace
stimuli. STRF changes exhibit different patterns depending on cell gradg3Zawidth, but all
are in line with the examples we show in Figure 4.7. For masker cells, we found the &€R
enhanced in all PZ conditions. For target cells, we found that there was a net suppreission w
became weaker as the PZ width increased. In Figure 4.8b we illustrategrdm of the local
STRF changes from all masker and target cells. We also computed thenddéfbetween the
average target STRF from behavior and passive conditions (see Figure A2.4 in A)ehds
important to note in Figure 4.7 that while reference-STRFs are derived famtiyethe same
stimuli in passive conditions (pre and post-behavior) as during behavior, this is nadetferc
the “target-STRFs”. They are computed from the target stimuli duringvioehBere, we
compared these to target-STRFs computed from the same target stimulbbdiéddater from a
different population in passive condition. We found the STRFs are enhanced for ¢dsget all
PZ conditions, which are consistent with increasing correlation during behaviardet cells.

For masker cells, the enhancement is relatively small comparing withamges in target cells.
More careful control experiments need to be conducted before stronger comsclesn be

drawn.
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Figure 4.8 Population patterns of reference STRF plasticity. Average &iffRence between
behavior and pre-behavior conditions (a) for masker cells; (b) for targetrtistisgram of
STRF changes at BF (c) for masker cells; (d) for target cellprésents that mean is significant

different from O (t test, p < 0.05).

4.4 Summary and Discussion
In summary, we found changes in correlation and STRF in primary auditory cdmexan
animal performed a task that involved streaming of the acoustic stimuli. Thatrsgularly

repeating tone sequence embedded within multiple randomly varying tone balstsidsal
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results from Chapter 2 showed that ferrets could stream these stimuli &tiek tharformance
was improved with increasing PZ width. Here we found the following results:

1. Consistent with previous findings (David et al., 2008), responses and STRFs driven
during the “reference” portion of an appetitive task became enhanced contptired t
passive state. Cells that are not primarily driven (or have BF seledtivifom the
reference stimuli such as the target cells) became suppressed.

2. In Figure 4.8a, there seems to be a bigger overall enhancement (and less suppression)
the 9/12 ST cases than in the 6ST case. Again, this is consistent with findirgs €At
al., 2009) that easier tasks cause more overall enhancement and less suppression,
compared to more difficult task. To elaborate further, in Atiani’'s expetsn(@009),
animals were trained to perform a detection task of a target tone embeddesk insnog
a conditioned avoidance procedure. They found at easy task (high SNR) cells tuned near
the target tone frequency showed an enhancement at BF, while those tuned far from i
showed suppression effects. In our experiment, the animal was trained tdhaetagget
tone sequence using a positively reinforcement procedure. The maskar oali€ase
are the near cells in their experiments where enhanced sensitiBEywas found. The
target cells are equivalent to the far cells and the suppression at BF wagetisplour
case. The suppression depended on PZ width, which is equivalent to task difficulty in
their experiments.

3. During the target-phase, target and masker cells were driven byreéamst and the
animal was attending to the target tone, so we found enhanced STRFs for both cell

groups, but the effects were much larger for target cells.
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4. The correlations in responses depended on the streaming and behavior. Basitsally, ¢
that belonged to the same stream were positively correlated, while thosererdiff
streams were uncorrelated or only weakly correlated. Furthermomeirctie stream

attended to by the animal during behavior were more positively correlated than the

unattended stream.
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Chapter 5 A Computational Model of Auditory Scene Analysis baed on

Temporal Coherence

5.1 Introduction

Auditory scene analysis (in analogy to vision) is to parse mixed acousttsev® meaningful
streams where each stream is assumed to originate from a separege i the acoustic stimuli
are speech, it is often known as cocktail-party effect (Cherry, 1953) qudkelssegregation
problem. As with the correspondence problem in vision scene analysis, the auditory scene
analysis has to solve the binding/grouping problem for the cues that belong to eaehHoene
are two levels of binding/grouping, namely simultaneous binding and sequeotipirgy.
Simultaneous binding is to deal with at each time instant what channels@ueericy, pitch,
location, etc.) of auditory representations are dominated by one stream/seqremtial
grouping is to match the auditory representations of a stream at a patiing with the
representations of the same stream at a later time. Pitch, common &etet/of
frequency/amplitude modulation, location, and frequency proximity are cues ofgimibe
conventional computational auditory scene analysis (CASA) models. However, how these
different cues/features are integrated has not been well addressethaimnd i@ challenge. Here,
we propose a novel CASA model based on temporal coherence and attention/memory.ITempora
coherence solves the simultaneous binding problem and provides an elegant wayaifrigte
different cues, for channels that belong to the same stream are activaezhtighno matter
whether they represent pitch or location or timbre cues. Attention/memory is @ddpcsolve

the sequential grouping problem.

81

www.manaraa.com



5.1.1 Review of Existent Models

Because of its wide application in speaker separation, speech enhancemengend spe
recognition, many computational models have been proposed to perform auditory sogig. anal
Some of them, like blind source separation (BSS), are purely based on thesstdtibie

signals. In BSS, the goal is to reconstruct streams under the conditidmethatgnals are
independent and are linearly combined at multiple sensors. If the dismlmitsources is
hypothesized, the mapping between signals and sources can be found by minimizing the
statistical distance between the hypothesized distribution of sources antintia¢eels

distribution of the sources (Cardoso, J.F., 1998). BSS has been mathematically proven to be
feasible for source separation (Belouchrani et al., 1997, Pham and Cardoso, 2001, and Fevotte
and Doncarli, 2004) when mixtures are not too noisy and the number of sensors is equal or more
than the number of sources. Recently, a Markov chain Monte Carlo implementation was
proposed by Fevotte and Godsill (2006), which can deal with the noisy and underdetermined
situation where sources exceed sensors. In this method, audio signals deedingposed on a

local cosine lapped transform basis, and are then sparsely representediofepgrarformed in

the transform domain by using Gibbs sampler and minimum mean-square ematess

Instead of considering speech segregation under the multiple-sensor sitwatierstatistical
methods are proposed to address the situation when only one channel is available,ves whe
listen monaurally. Raj and his colleagues (2006) proposed latent Dirichtenhgesition for
single-channel speaker separation. Individual speaker’s spectrograrh itreamstant is
modeled as a multinomial distribution. The spectrogram of the mixed speechingéne |

combination of those from each speaker. The combination coefficients are madalBdrighlet
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density, and the parameters of the multinomial distribution and Dirichlet dansitgarned from
the original unmixed speech. Reddy and Raj (2007) recently proposed two more mathods f
single-channel speaker separation MMSE algorithm and soft mask estiriatodistribution

of the log spectral vectors for any speaker is modeled as a Gaussian mextsity. The MMSE
algorithm attempts to minimize the mean squared error in the log spectofimaSk estimation
is to compute the probability of any time-frequency component belonging to geé speaker,
instead of a binary mask. Both methods result in improving signal to interfereiodSiRY) and

perform better than an equivalent binary-mask algorithm.

However, all these data-driven methods are essentially unrelated to thieatvene best
performers, human beings, do the task. In this vein, some auditory scene analyEtagczle
been developed based on findings from psychoacoustical and neurophysiological studies. A
number of ideas have been suggested to mediate scene analysis includjrgppitoon
onset/offset, and location (Bregman, 1990; Bronkhorst, 2000; Shinn-cummingham, 2005).
Almost half a century ago, pitch was already proposed as a way to perform at@paech
segregation probably because of its close relationship to voicing in speecmsHa6s6)
described a method to separate target speech from interfering speechrbhaemonicity
assumptions. First, the peaks of spectrum of two utterances are identified. $edohdk are
extracted according to Schroeder’s histogram which is generated by faidimgger
submultiples of all the peaks. Then peaks are assigned to the corresponding pitch. éver tim
pitches belonging to one speaker are tracked by fitting a least-squargist $ine to the three
most recent pitch samples and choosing the best match between the predicted andl observe

values. Finally, the spectrum of the target speaker is synthesized frommtsnies and the
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inverse Fourier transform is performed to get a continuous speech wavefocmtt&n, much

work has been done to develop better pitch estimation and tracking algorithms.

The classic pitch analysis is based on the auto-coincidence of the coidteleaufput proposed
by Weintraub (1985), and which Slaney and Lyon (1990) caltdheelogram It is a short-time
multi-channel auto-correlation from all channels of the auditory filtédcbbaater, Karjalainen

and Tolonen (1999) introduced a more efficient 2-channel auto-correlation analyhkishnew
enhanced summary auto-correlation function (ESACF) is generated by rertievigpetitive
peaks and the near zero time-lag part of the summary auto-correlation fuB&oR)(curve.
Ottaviani and Rocchesso (2001) further improved the performance by multiplying@tedhd
ESACF. Instead of summing over all channels in correlogram, Wu et al. (2002) usgstiaa
relationship between ideal pitch and the time lags of peaks in selectedideaels to estimate
pitch. Inspired by findings from psychoacoustic studies which imply that auditdensys
processes the resolved and unresolved harmonics in different ways, Hu and Wang (2004)
proposed an algorithm especially to improve the grouping of the unresolved harmoedtsibas
common amplitude modulation and temporal continuity. Another alternative for pitctagsh
was proposed by Quatieri (2002). Instead of computing a short-time aetatiorr analysis, the
new method performs a 2-D Fourier transform of a narrowband spectrogram of #igveigch

is called grating compression transform (GCT). Pitch is estimateddwating the vertical
distance of the peak of the GCT magnitude to the GCT origin. Its feasioiligstimating

pitches of 2 speakers talking simultaneously has been applied to co-chaakel spparation
(Wang and Quatieri, 2009a and 2009b). A totally different method for pitch perceptioeds bas

on place, instead of temporal, representation of sound. In that model, pitch atesbtim
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instantaneously by cross-correlation the instant spectrum of input stirttulhamonic pitch
templates (Goldstein, 1973; Shamma and Klein, 2000). Most CASA approaches segregate
speech from target and interfering speakers by assigning all of tigg/ éa¢he dominant
speaker after examining the energy in each time-frequency unit, whiclesath@ecmnodels
performance when the energy from both speakers overlap in a particuldiretuency unit. An
algorithm proposed by Vishnubhotla and Espy-Wilson (2009) is different from tradiGéy&A
approaches. The algorithm separates the participating speakersstreag a Lease-Squares

fitting approach to model the speech mixture as a sum of complex exponentials.

All above pitch-based methods are limited to voiced speech. For separation of the ndn-voice
speech, several other cues have been proposed, most common among them are the bsaural cu
The first biologically-inspired computational model of binaural localization epdration was
proposed by Lyon (1983). Applying the Jeffress model (Jeffress, 1948), the anetatiom
between auditory spectrogram coming from two ears is calculated. Sanececalized based

on peak-picking in the correlation functions and different gains are assignecctorésponding
sources. Improving of the Jeffress model whose performance degradésasitpiin more than

2 sources, Liu et al. (2000) proposed to incorporate a “stencil” filter whichedae the high-
frequency ambiguity for ITD estimate and enhance the localization of souneésoline system
performs well in detecting the source locations with four talkers in expesroesix talkers in
computer simulation. Palomaki et al. (2004) applied a skeleton cross-correlatiborfuac
improve the ITD estimation. Interaural level difference (ILD) is atmiporated to refine

speech segregation by comparing the measured ILD with the ideal ILDgsrtiaeilar location

estimated from the ITD.
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Roman et al. (2002 and 2003) presented a CASA model to segregate speech based on sound
localization. They suggested a binary mask for auditory spectrogramrmofxtiges to select the
target if it was stronger than the interference in each time-frequertcy baimask is generated
based on joint information of both ITD and ILD. Although the performance has been
demonstrated better than an existing approach, the proposed model does not address how to
define a target in a multi-source situation. In a similar way, a soft tegerency mask is derived
based on the joint distribution of ITD and ILD cues (Brown et al., 2006; Srinivasan20Gg).

In addition, common onset/offset (Brown and Cooke, 1994; Hu and Wang, 2007) and amplitude
modulation (Kollmeier and Koch, 1994) have been implemented in several CASA models.

However, it remains a problem to integrate these different cues into A @A8el.

5.2 The Temporal Coherence Model

The model we propose uses a novel cue, temporal coherence, to perform the simultaneous
binding. The idea is that highly correlated channels over a short time perioceré@esmmon
fate which has been well known as one of the Gestalt Principles guiding sedyssa

Temporal coherence provides an elegant way of solving the problem of integragiodesfce
derived from multiple cues. For example, channels, that have a common onset@nd are
modulated are coherently activated. Such temporal coherence correativtessall different
types of features (e.g. pitch, location, loudness, color, texture, etc.) within andaues

modalities.

The correlation theory of brain function was described by von der Malsburg in 1986 to address

how neural assemblies communicate across distance. In these theories, tesgitaibns are
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assumed to arise from spontaneous sources that are not related to the stimulusgyarassl
Evidence from visual cortex shows that neural populations responding to the same&saljéxt

fire synchronously and are desynchronized from those responding to different objenikisSt
specific neuronal oscillatory responses have been found in the cat vigeal(@Gnay and

Singer, 1989; Gray et al., 1989). This correlation in brain has been simulated in theyauditor
modality to illustrate cocktail-party effect by an oscillatory ret(von der Malsburg and
Schneider, 1986). Wang and Brown (1999) also proposed a CASA model using the principle of
oscillatory correlation. Segments derived from harmonically reldtadrels are input into an
oscillatory network. Binding across these frequency channels at eacfraimme of the

representation is formed by the oscillatory correlation.

Our model is completely different in that the temporal characterisgdhase of the stimulus

and are not intrinsic. Furthermore, sequential grouping depends on attention or n#eg#ory

has been hypothesized to consist of two processes (Bregman, 1990). The firstipqueess
attentive/data-driven, which forms low level auditory representationsrdapndhwolves

peripheral processing. The second one is schema-based, which involves high lev&tppentra
down processing. The role of attention in stream formation has been a debataide fuest

long time. Results from EEG studies have argued that attention is not alepayeddor stream
formation, but can limit the processing of unattended input in favor of attended sens®y input
(Sussman et al., 1999 and 2007). However, experiments from psychoacoustical suadies ha
shown that temporal coherence/fission boundary is influenced by attention (van Noorden, 1975)
and recent binaural stream segregation experiments by Carlyon and higuss|€2001)

support that attention plays a key role in streaming by showing that effectigdaupof

87

www.manaraa.com



streaming is significantly affected by attention. Besides, evideaoe MEG studies (Gutschalk
et al., 2008; Elhilali et al., 2009), and neurophysiological study (Yin et al., 2007) has
demonstrated that attention can modulate neural responses associatedamitingtoercepts.
Although top-down processing is an important part of ASA, computational modeling of this
processing is a challenging problem, which may explain why very few sodttle literature
consider the top-down influence. However, a computational model of auditory\sektéintion
for stream segregation has been presented by Wrigley and Brown (2004) in which & nétwor
neural oscillators performs stream segregation based on oscillatoratonr@lroposed by
Wang and Brown (1999). The attentional process is modeled as an attentionattiegiatar,
which determines the connection weights between oscillators and an attentiangheini
attentional stream is those auditory representations, the activity of wémlators are
synchronized with the attentional leaky integra@odsmark and Brown (1999) employed a
schema-driven organization in their multi-layer blackboard architeaui@ASA, which
allowed high-level predictions based on a previously observed pattern to influence the
organization at lower levels of the blackboard. Elhilali and Shamma (2008) preseoigtea
clustering method for stream segregation by comparing predictions framaKdilter with the
incoming sensory input. In our model, the role of attention is simply simulatedibgiags
channel binary weights based on the energy of each channel (i.e. variande ciisaael)

within a range of selected channels. In the CASA literature reviewedadlation, the speaker
ID task has been performed using pitch tracking or assumed known spatial locatiogefor tar
But this has not addressed the issue of scene analysis based on long term memaeeyr, Hasve
trivial in our model to use location or pitch as a cue guiding the grouping over tjaae, a

because of binding variant attributes based on temporal coherence.
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In the temporal coherence model, the first stage is to compute a coherémedynaalculating
correlation at zero-lag across channels in the multi-dimensional audifogsentations. The
pair-wise correlation measures the degree of synchrony betweeretshaighly and positively
correlated channels are synchronized and desynchronized away from thamnesi<
Coherence forms a basis for organizing features belonging to one streamaghthdehose
belonging to the interference. The second process is either emploginioatto select the
correlation coefficients for target stream or finding the closesthedtcorrelation coefficients
with memory. A pre-trained support vector machine (SVM) is used to mimic theciomét
memory. The selected correlation coefficients act as a mask to erthareuditory

representations activated by target stream and suppress those actitaeethterference.

5.3 Computational Model for Auditory Scene Analysis

A biologically-inspired computational auditory scene analysis model, based porggm
coherence and attention/memory, is proposed in this study. The diagram of thesrsbdain
in Figure 1. The model is comprised of four main stages. First, sound waveferprsjacted
into multi-dimensional feature space (i.e. frequency, bandwidth, pitch, andigcdihese
features are rapidly extracted (e.g. in the order of 10 ms or less). Secenddfi-resolution
filtering over time, a windowed pair-wise correlation is computedsscall feature channels.
Channels with high correlation coefficients and the same sign tend to evolve tayethime
and belong to one stream. Each row of the coherence matrix tells the degreeafa®béthis
channel with the rest, or from this channel point of view, how the auditory elements are
organized. This stage requires integrating a relatively long time perigdsifeto ~500 ms).

Thirdly, a mask is formed by selecting channels and correlation coefficisssiated with
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those channels (i.e. rows of the coherence matrix) from the coherence nwairdiragto either

attention focusing or memory matching. Finally, the mask is multiplied witghe features to

separate target from the interference by filtering out the taegetsentations and suppressing

the interference. Then, the filtering representations are convertedotekacoustic domain.
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Figure 5.1 The CASA Model diagram. 1: selecting mask on feature domain agdaréither

attention or memory.

5.3.1 Stage 1: Multi-dimensional Auditory Representation

This stage basically performs simultaneous feature extraction of mcsigstls. Here we only

consider four primary features (i.e. frequency, pitch, bandwidth, and location) prgmot

auditory stream segregation; however, it is straight-forward to add otherefeanto this model.
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5.3.1.1 Peripheral auditory processing

After travelling through the inner ear, the input signal, s(t), is decomposed mte a t
dimensional time-frequency domain through a series of peripheral auditory pngogésng et
al, 1992; Wang and Shamma, 1994): cochlear filter bank decomposition, hair cell filéehg

spectral sharpening and rectification.

Cochlear filtering is modeled by a bank of 128 overlapping constant Q bandfgassaifitose
center frequencies are uniformly distributed along a tonotopic/logaritinegiaency axis (x)
over 5.3 octaves and impulse response of each filter is denoted by h(t;x). The ddtdrezar
implemented by a minimum-phase signal h(t) with magnitude frequency response

IH(0)| = {(Xh —x)%e Bt 0 < x < x
0, X > Xp )
YCoch(t; x) = s(t) *t h(t, x)

where % is the cutoff frequency = 0.3, = 8, and ¥ denotes convolution operation in the time

domain. For details of cochlear filter implementations, see Ru (2000).

The responses of these cochlear filters are further transduced by immeellbahrough a high-
pass filter mimicking the fluid-cilia coupling, a nonlinear compression, g, limgd@e function

of ionic channels, and a low-pass filter, w(t), accounting for hair cell meraleakage.

Yan (&, %) = g(0tYcocn(t, X)) *¢ w(t) (2)

Then the auditory nerve responses are transmitted to the cochlear nucleus, lateeaé a

inhibitory network is applied to enhance the frequency selectivity of theeardiiter bank. The
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lateral inhibition is approximated by a first-order derivative with eesfo the tonotopic axis and

then half-wave rectifying.

yun(t x) = max(9,yan(t,%),0)  (3)

Finally, the output of the lateral inhibition network is integrated over a shooderieffectively
extract the envelope of the channel outputs. The final output is called auditory gyaentro

shown in Figure 5.2a.

y(t, x) = yLIN(tl X) *t ,Ll.(t, T) (4)

5.3.1.2 Spectral shape analysis

The auditory spectrogram is further transmitted to higher central auditmgs to extract
cues/features. Neurophysiological findings in primary auditory cortex é&hivet al, 1996;
Miller et al., 2001; Elhilali et al., 2007) and human psychoacoustical experimentagEzadi
Bero, 2007; Green, 1986; Viemeister, 1979) suggest that the central auditory sysbemsper
spectral shape analysis which is an effective physical correlate pétbept of timbre. The
spectral shape analysis is implemented in the model by wavelet decoamakitig the
tonotopic axis (Wang and Shamma, 1995; Chi et al., 2005). Each slice of the auditory
spectrogram at a given time instant (t) is convolved with a bank of scalg, fjlie, that range
from narrow to broad bandwidths. This multi-scale analysis captures thendogliodal spectral
modulation of the auditory spectrogram. For example, in Figure 5.2b, the output of the
broadband scale filters shows speech formants, while the output of the narrowlbafittessa

shows the resolved harmonics.
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where % denotes convolution operation with respect to tm®topic axis x an and
denote Hilbert transformairs. The scale filte is a complex spectral “impulse respon
function. It is chose to be a Ga-like function, which is defined as the second dsrixe of a
Gaussian function.  he spectral density of the filter, covering thegea from 1/8 to ¢

cycles/octave where the cortical neurons most seaso
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Figure 5.2 Examples ¢he outpus of peripheral auditory processing andticat spectral shag
analysis. (a) Thewalitory spectrograrof an utterance from a female speaked (b the output

of cortical spectral shape anal for the slice of the auditory spectrogram at tim&tant o.

5.3.1.3 Pitch analysis
Pitch is an important cua segregation of harmonic soul (Moore et al., 198¢, for example

speech. Pitch information is implicitly representedhe harmonic structure the auditory
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spectrogram. Here, we extract pitch information from the auditory sgeain using a template

matching model proposed by Goldstein (1973) and Shamma and Klein (2000).

First a harmonic template representative of any harmonic seriasasatgd by cochlear
filtering. On the logarithmic frequency axis of the cochlea, this tem@atains the canonical
template and unchanged since the harmonic series for any fundamentalysasiraptlation
along the frequency axis. At each time instant t, this template is convoltretheinput
spectrum, y(t,x). and the similarity at each shift is scored by crosslatmon between them.
Pitch values are given by peak-picking from the output of the cross-correladexed by
tonotopic frequency x. The pitch strength at a given fundamental frequencgtdia
Euclidean distance between the spectrum and the corresponding template. Onecottgien
introduced by this template matching method is solved according to the relatlvetpiingths.

Figure 5.3 displays the pitch estimates over time for a mixture of male raatefspeech.

Pitch ww
Analysist

&

—>s™
'

Fraguensy (| 2)

Figure 5.3 An example of output of pitch analysis. Left panel: the auditoryregeen of the
mixture from a male speaker and a female speaker. Right panelttpl of pitch extraction for

both speakers.
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5.3.1.4 Location analysis

Humans and many animals determine the location of a sound source by compaesgdhseas
between two ears. For example, sound waves arrive at the ear closeotartieesghtly earlier
than the farther ear, which causes an interaural time difference (ITDyvwWié@, an interaural
intensity/level difference (I1ID/ILD) is caused by the sound intensifigihce between the
closer and the farther ears. In this study, we only consider ITD as thiemooae. A biologically
plausible model for ITD was described by Jeffress in 1947. The signals abtkarsvare
transmitted to the higher central auditory system with a delay becalid®. athe corresponding
coincidence detector represents this delay. We implement this desamtiled using the

algorithm proposed by Lyon (1983).

The algorithm begins by computing a cross-correlation between the awgfieatyograms at the

two ears.

N-1
L(t,x, 1) = Z yo(t —n,x)yr(t —n —1,x)w(n) (6)
n=0

where y(.) and w(.) are the auditory spectrograms at the left and right ears, respeatiye) is

a window of size N samples. We use a rectangular window with 50 samples (i.e. 6. 2&ms).
between -1 and 1 ms. L(t,®, is called cross-correlogram and Figure 5.4a shows an example of
two speakers with -0.375 ms and 0.5ms ITD, respectively. To improve the robustessTaf t
estimation, we sum the cross-correlation over frequency channels showaorie %-#p. By
peak-picking from the summary cross-correlogram, ITDs are dstinjgigure 5.4c). Since we
only consider stimuli in which ITDs are synthetically generated as thdleackleton (1992),

there are no diffraction effects which introduce a weak frequency-dependdhbes tand no

reverberant conditions. Therefore, this simple algorithm already gpassnable results.
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Figure 5.4 An example autput of ITD analysis. (a) The crossrrelogram and (b) tF
corresponding summary crossfrelogram for one time instant of tmeixture in Figure5.3, and

(c) the ITDs for the two speakers over til

5.3.2 Stage 2: Temporal @herenceAnalysis

The analysis of this stage proceeds in tteps: multi-rate filtering and pawise correlatior

5.3.2.1 Multi-ratefiltering

Evidence showthat cortical neurons tune to a limited range afgeral modulations (Kowalsl|
et al., 1996; Lu et al., 2001). At this stage, tieas extracted from the early sts are gone
through a temporal analysis with m-rate dynamics covering from 2 to 32 Hz. The n-rate
analysis integrates the history of neuron respoasdss used in the next step to compu
temporal coherence matrix. Similar to the n-scale analysis, this multate analysis i

implemented by wavelet decomposition along the @xis (Wang and Shamma, 1995; Cr
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al., 2005). Specifically, the temporal analysis is implemented by convolving thegivepaach
frequency-scale-pitch-location channel), I, at each time instant t \eiinlaof rate filtersgyg.
R(t,x,Q,p,Lw) = I(t,x,0p,1) * Grp(t,w)
Grr(t,w) = wg,(wt) + jwi(wt) ™
g:(t) = t2e=35tsin(2mt)

whereGgr(.) is assumed to be a gamma function parameterized by the temporal modulation, w,

which are [2 4 8 16 32] Hz.

5.3.2.2 Pair-wise correlation

This correlation analysis postulates that cortical neurons expressnela¢tween active cells
representing parts of the same object through temporal coherence (Shamn29&0p It
measures the similarity of auditory responses across channels. Thiatmorrsl used to bind

coherent channels and separate them away from those incoherent ones.

The correlation is computed over relatively long time windows based on tHiteasechosen in
the multi-rate analysis, ranging from about 30 to 500 ms. This is consistenthatipical range
of phase-locking rates in the cortical responses and stimulus present&soovex which the
formation of streams usually occurs. We only consider the instantaneous coin¢igence
correlation at zero lag) across all pairs of channels (i.e. frequenay, gitah, and location
channels) integrated over time, which is roughly equal to instantaneous correlatiearbpairs

of channels summed over rate filters.
¢ = f KOL® = Y RWE W) (©)
w
where (*) represents the complex-conjugate.
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This coherence matrix consists of a map of weights indicating the degreeeoéromd between
pairs of channels. For example, the correlation coefficient near 1 irgllugtdy coherent pair
of channels; the correlation coefficient near -1 indicates highly antreohehannels. For
stationary stimuli, the matrix reaches a stable point after a build-up petidé,for non-

stationary stimuli, it dynamically evolves over time.

5.3.3 Stage 3: Mask Formation

Each row/column of the coherence matrix can be viewed as a “mask”, whichesdican this
channel’s (i.e. this neural cluster) point of view how the auditory responsesjarezed,
inferring the percepts of the stimulus. Presumably, channels belonging tonthe®arce are co-
modulated over time. Therefore, they are highly correlated differengittem from those

belonging to interference.

We postulate that a mask can be formed in two ways. In one way, when attentioreis pali
range of feature channels, a binary weight is generated for eactechaoording to energy (i.e.
variance) at those channels and is applied to all correlation coefficierdd pgih that channel.
The diagonal of the coherence matrix indicates variance of each corresporatinglckVithin
the attentional focus, top N channels with highest energy are chosen. A tasgesrformed by
taking the average of the correlation coefficients paired with the chosenetdias indicated in
Figure 5.5. In Figure 5.5, for illustration purpose, 2 channels within the attentionaldoe

chosen. During simulation, we chose N=5.
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Figure 5.5 Schematic of coherence matrix and mask formation. The sizedéanclicates
correlation coefficient between the corresponding pair of channels. A airttle diagonal
indicates variance of the corresponding channel. Within the attentional kbchannels with
highest energy are chosen. Here N=2 for illustration purpose. During sonulag chose N=5.

The average coefficients of the chosen channels form the mask for target.

In another way, a mask can be formed by selecting multi-rows from the wobenatrix
according to memory. A boundary between masks for target and for non-targetefiped by
a support vector machine (SVM). A SVM performs classification by construgtiyperplane
that separates the data into two categories (Theodoridis and Koutroumbas, 2006). The
hyperplane is computed by optimizing the margin between separating boundanppod s

vectors. Radial basis function is used as the SVM kernel.
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5.3.4 Stage 4: Stream Segregation and Reconstruction

Finally, the cortical representations of the target stream are ségpldigom those of the
background by point to point multiplication of the formed mask with the output of multi-rate
analysis. The same mask is applied to the output of each rate filter. Treeimzarelet
transform and an iterative method based on the convex projection algorithm propdsedlst
al. (1992) and Chi et al. (2005) are used to reconstruct the signal from the strearoald cort

representations to the time domain.

5.4 Simulation Results
To demonstrate the performance of the model, we first test the model on tiestiassi
widely used to study the perceptual formation of auditory streams. Then wehghsimulations

of the model on speech segregation (or speaker separation).

5.4.1 Segregation of Tone Sequences

A sequence of tones alternating between two frequencies, A and B, is the tymichisused in
many psychophysical and physiological studies of auditory streaming. Tdeppevoked by
such sequences depends primarily on the frequency separation between theswid-t@mel on
the inter-tone intervalAT. For smallAFs and relatively longdTs, the percept is that of a single
stream of tone alternating in frequency (ABAB); for lades and relatively shoATs, the
percept is that of two separate streams of tones of constant frequencys(A&B). In the
example shown in Figure 5.6a, the frequency separation is 1 octave and the repesateat
about 4 Hz for each tone. Under this condition, the percept is that of two sepagaies skgure

5.6a illustrates the model simulation of streaming of the two alternatingéopences.
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Another example is a sequence of harmonics alternating between two émdbirequencies,
310 and 200 Hz (Figure 5.6b). The representation rate is about 4 Hz for each fundamental
frequency. It is normally reported as two streams as well in perceptionthrsgleondition and

the simulation result is depicted in Figure 5.6b.

Stimulus spectrogram Reconstructed spectrogram
for perceived stream
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Figure 5.6 Model simulation of commonly used stimuli in auditory scene anagjsié. (
sequence of tones alternating between two frequencies (left panel) andutaisn results of
perceived streams (right panels); (b) A sequence of harmonics aftgripetween two
fundamental frequencies (left panel) and the simulation results of perstigaths (right

panels).

5.4.2 Segregation of Speech Sounds

Experiments are conducted on synthetic mixtures of signals from diff@eaiters to evaluate

the model performance using both mask formation methods proposed in the previous section.
Utterances of male and female speakers from the TIMIT databasesdrd’usr to addition,

signals are resampled to 8 kHz and scaled to create speaker-to-interfatersc(SIRs) at 0 and

6 dB. Mixed signals are obtained by digital addition of utterances from individustesge The
length of the mixed signal is set to the shorter of the two signals. We havedtgeé two-

speaker mixtures: female-female, male-male, and female-maldsistudy, we only test our

model on 2-speaker mixtures.

54.2.1 Attention-based mask formation

In this set of experiments, a mask is computed by applying attention to eofarfiganels in a
specific feature domain. For instance, for mixtures from female and maleespewe attend to
pitch channels ranging from 150 to 300 Hz (from 70 to 150 Hz) to segregate utterancé®from t
female (male) speaker. For mixtures from the same gender speakatteneto location

channels corresponding to the target speaker’s position. In this study, we assnthsairces

to be stationary in space. Figure 5.7 shows an example of the original, mixed, segrédugated
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spectrogram of the utterances from a female and a male speaker. Itsesm lfiom the figure
that considerable separation has been achieved for the target speaker. Tptheanodel
performance in speech segregation, we use the same metric, correlatieenbigvoriginal and

segregated spectrograms, as that in Elhilali et al. (2008).

Target speaker Interfering speaker Mixture

0 «©o B0 00 IC&;.'Z\:? 1400 1800 1800 2000 2200
Segregated spectrogram of target
speaker

Figure 5.7 Model simulation with speech-on-speech mixtures. Model performanaduated
using correlation coefficients between (1) the original and segregatetbgpams pseq
inferring how well the target signals are extracted; (2) the two origpedtrogram$ypase
providing a baseline; and (3) the segregated spectrogram of the targeagainst the
spectrogram of the original competing sigmal.y, indicating how well the interference is

suppressed.
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Several correlation coefficients are computed between: (1) the drRgidaegregated
spectrogramsyseg (S€gregation correlations), inferring how well the target signalsxénacted;

(2) the two original spectrogransase(baseline correlations), providing a baseline; and (3) the
segregated spectrogram of the target signal against the spectroghenoginal competing
signal,pcont (cOnfusion correlations), indicating how well the interference is supprdagée.

ideal conditionpcontis equal toppase both of them much lower thaner, and psegis equal to 1.

To compensate for amplification and distortion effects introduced in the reggnihesess, we
use resynthesized spectrograms for the two original signals to computeréhatioor

coefficients. The histograms of correlation coefficients (Figure 5.8a) at ORIBeBsnonstrate

that for mixtures from different gender speakers, segregation occurs witbusacycofpseg

=0.73, which is significantly higher than the baselpmgs=0.04 and the confusiopg.n=0.27.

The performances show further improvement at 6 dB SIR (Figure 5.8b) with an gauiysag
=0.82 andbcont= 0.16. For mixtures from the same gender speakers, performances are similar as
those from different gender speakers, except that the confusion correlatiaase slightly as
expected (Figure 5.8c and d). The numbers reported here are the median vakieswélation

coefficients.
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(a) SIR. = 0 dB (b) SIR = 6 dB
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Figure 5.8 Histogram of speech segregation performance for SIR = 0 and Spigtirely. (a)
and (b) are results for male+female speech mixtures; (c) and (d) ate fesolale+male and

female+female mixtures. The number indicates the median value of eaithudstr

5.4.2.2 Memory-based mask formation

In this experiment, a mask is derived by a pre-trained SVM for each speakeaiM&e3VM to
classify masks for target against non-target speakers. Utteranteegatfand multi-interfering
speakers from the TIMIT database comprising approximately 3 minutps@tlsare used as
training data for each target speaker. Mixed utterances are usead tbér&VM instead of the

original utterances from individual speakers. Mixed utterances are obtgicedbining
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utterances from the target speaker with those from non-target speakederitoanake the
target and intrusion at the same signal level, all training utterarees@nalized to have 0
mean and unit variance before addition. To avoid over fitting, cross-validation iouseuate

the fitting. Different data sets are used for training, validating, and teagngVM.

At each time instant, two rows selected by peak-picking of varianee$h@ diagonal of the
coherence matrix) within a feature domain are fed to the SVM. The outputdieddvVM are
the class label and the distance to the hyperplane for each input. The SVM @gves aate of
about 6% in classification. The performance of the model from a SVM trainedehorade
speaker is shown in Figure 5.9 (SIR = 0 dB). Segregation occurs with an accysagy®72,
which is significantly higher than the baselipgase0.03 and the confusiopeon=0.25. These

results are comparable with those using attention-based mask.

60r 0.03 N = 200
§ 50t — Phase
=
£ 40t Pconf
g 072 = Pse
< 30t - 8
[=]
3 o0t
£
= 10t

- (o | T nIJ . ,
0 02 04 06 08 1
Correlation Coefficient

0

Figure 5.9. Simulation results using a SVM classifier for a femalettappaker at 0 dB SIR.

5.5 Summary and Discussion
Inspired by neurobiological findings, we proposed a computational model of auditoey sce

analysis based on temporal coherence across multi-dimensional auditosgmégdiens. The
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model can account for the percepts of the commonly used stimuli in auditory scesesaral
successfully perform speech segregation at two-speaker conditions. s aes comparable
with those presented by Elhilali and Shamma (2008). Temporal coherence is the éouoidati
the model, which provides a binding cue not only for auditory representations linking with a
particular attribute, but for various attributes belonging to the same sawgaeiwithin and
across modalities as well. For instance, paying attention to one pitch, bind not tialyahics
associated with the pitch, but also all coherent attributes (e.g. spa#iibh, timbre, loudness
etc.) belonging to the same source. The model has the flexibility to integsateher sensible

attributes known to promote stream segregation.

Like conventional CASA models, we compute auditory representations of various sound
attributes such as frequency, pitch, and spatial location. However, our model iatsilysta
different from previous studies in the way such ASA cues are integrated. Thepressdmted by
Tessier and Berthommier (1997) performs double vowel segregation based on pitcB and IT
cues. But by selecting the segments generated according to eithesrgit® cues, the model
really does not combine both cues. Several CASA systems are proposed to sepesgdie
utterances based on harmonicity or amplitude modulation, while binaural cuescare gisiele
the grouping over time (Kollmeier and Koch, 1994; Okuno et al., 1999; Shamsoddini and
Denbigh, 2001). In our model, temporal coherence automatically binds the auditory
representations of the diverse attributes of a stream, which allows sdoreded the stream
outside of the attentional focus to contribute to the stream by simply attending tatondgra

feature.
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The idea of temporal coherence as a binding cue in perception has been presestéy earl
Malsburg in 1981 and has been implemented in CASA using neural and oscillatory networks
(Malsburg and Schneider, 1986; Wang and Brown, 1999). However, in these models, the
correlations are induced lmytrinsic oscillatory activity at the cellular level such as a tendency of
cells to form bursts of spikes. By contrast, in our model, the correlations areustidnivien, that

is caused by the slow phase-locking rates in the cortical responses ty seyrsals.

In our model, attention plays a crucial role in the stream formation. Prioetdiafttal selection,
the coherence matrix may be computed by pre-attentive (data-driven) ppmoessing

flexibility of potential decompositions of auditory scenes into streams. A nmasesponding to
a particular scene is only formed when attention is applied. However, madkcae formed
based on memory. In this model, we use a SVM to model the process of speaker itlentifica
(ID). Basically, a pre-trained SVM of a target speaker classifiegdtential masks from the
coherence matrix into target and interfering speakers. Finally, fiaroéixg ITD cue, the Jeffress
model used in this study is the simplest one, which is adequate for syntheggrahated stimuli
without the presence of noise and room reverberation. However, in free-fielchiisteni
conditions, the head-related impulse responses and the precedence effect need idebedcons
in the model. Further modification of the Jeffress model for improving the agonir&tD
estimates, such as "stencil" approach (Liu et al., 2000) and "skeleton'torog®gram
(Palomaki et al., 2004), is required. As in the CASA literature, we assume that sawess

have stationary locations.
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Chapter 6 Conclusions

6.1 Thesis Overview

This thesis is an attempt to answer the questions stated in Chapter 1: whatremaral
correlates of auditory streaming in Aland how attention can modulate the esf?efaid
furthermore, we propose a neuro-biologically inspired computational model of sustitare
analysis. First, we adapted two auditory perception tasks, used in recent huniapipgsical
studies, to obtain behavioral measures of auditory streaming in ferrets. ©me/tdged the
detection of shifts in the frequency of tones within an alternating tone sequbeaath@r task
involved the detection of a stream of regularly repeating target tortedeed within a
randomly varying multi-tone background. In both tasks, performance was egasua function
of various stimulus parameters, which previous psychophysical studies in humans haveoshow
influence auditory streaming. Ferret performance in the two tasks was found &s\afynction
of these parameters, in a way that is qualitatively consistent with thentdate These results
suggest that auditory streaming occurs in ferrets, and that the two tasks provigdke\taol in

neurophysiological studies of the phenomenon.

Second, current neuro-computational theories of auditory streaming rely on tonotopic
organization of the auditory system to explain the observation that sequential arallgpectr
distant sound elements tend to form separate perceptual streams. Here we s$josctifzht
components that are well separated in frequency are no longer heardrae stpsams if
presented synchronously, rather than consecutively. In contrast, responsesurons in the

primary auditory cortex of awake passive ferrets show that both synchramd@synchronous
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tone sequences produce comparably segregated responses along the tonotopic agidisThe r

argue against tonotopic (spectral) separgbenseas a neural correlate of stream segregation.

Thirdly, to explore attention effects on streaming, we recorded spikingtyaati ferrets Al
under two attentional states: passively listening to the stimuli andiateto the target stream.
Attention modulates the correlation of spike trains from pairs of cells in favtneahs
segregation. The correlation between cells belonging to the same streareaséd, while the
correlation between cells responding to different streams becomes reldutbdrmore, STRF
plasticity reflects those changes in correlation. The strength of the &¥dRges is modulated

by task difficulty.

Finally, taking into account the above biological findings, we propose a computatiodell oh
stream segregation that uses temporal coherence as the primaigncittepredicting stream
formation. Channels with high correlations and the same sign coefficiergsoaped together.
The new model provides a framework which can be used to study and predict the perceptual
organization of arbitrary sound combinations, such as speech from multiple talkengbiopat

music.

6.2 Future Research

We have focused here on a neurophysiological study of selective attention teeameand
showed that neural responses were modulated by attention in ferrets Al. To eststhebihiwe
can explore the effects of switching attention between two streams and howitithisngw

affects the representation of streams. Also we have found that attemtioataanly modulate
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the correlation between cells that had close or overlapping receptive fieldgflwaen distantly
related cells as well in the background stream (Chapter 4). Theréfooeld be interesting to
see if we can replicate this result for distantly related cells butibiesying features within

the foreground stream.

Noninvasive studies, EEG, MEG, and fMRI, with human subjects indicate that auditory
streaming may be strongly related to responses in Heschl's gyrus whocharate primary and
nonprimary areas of the auditory cortex. Neurophysiological experiments imunagi primate
Al and in songbird auditory forebrain, an area that is the homologous to the manmAdalia
have found that neural responses were modulated by the frequency separationtoha two
alternating sequence. Our experiments thus far have focused on Al. But iehdsurel that
Al is more stimulus-driven, and areas further down the auditory pathway ssetoasiary
auditory cortices and the prefrontal cortex, may be more selectbateigories, concepts, and

cognition, more sensitive to streaming, and hence would show stronger modulatitambgra

Finally, to truly combine behavior and physiology in realistic tasks, we need marse
convenient recording technology such as chronic multielectrode recordings thatahowl us
to use more freely behaving animals, and monitor changes in unit responses rapydilge®
will it be possible to establish a truly workable model for the study of the neuralates of

streaming in animals.
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Appendix 1 Supplementary Figures for Chapter 3
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Figure A1.10Single unit example for alternating sequence in experiment 1 in Chaptest8r Ra
and period histogram in two-tone alternating mode for all condition$ (85 positions). Each
condition has 10 repetitions. Each trial includes 0.4 second pre-stimulus silence, 3 seeond tw
tone sequences, and 0.6 second post-stimulus silence. Grey lines in raster imickhtenset

and offset. Grey area in period histogram indicates standard error.
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Figure Al.2 Single unit example for synchronous sequence in experiment 1 in Ghdgdster
and period histogram in two tone synchronous mode for all conditiokis X35 positions). Each
condition has 10 repetitions. Each trial includes 0.4 second pre-stimulus silence, 3 weeond t
tone sequences, and 0.6 second post-stimulus silence. Grey lines in raster imnuichienset

and offset. Grey area in period histogram indicates standard error.
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Appendix 2 Supplementary Figures for Chapter 4
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Figure A2.1. The difference between STACs (STi#\drom task stimuli and post during

behavioral and passive conditions, respectively. SjiA&) at smaller PZ (6 ST); and (b) at

larger PZ (9 or 12 ST). Magenta crosses indicate significant differetess, (p < 0.01) at the

time between two attentional conditions.
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Figure A2.2 Signal and noise correlations during target stimuli under two eti@ntonditions
(a) for smaller PZ, 6 ST and (b) larger PZ, 9 or 12 ST. Error bars indicate standaf&E}).
Magenta dots/green crosses indicate significant difference (t test, p <aDtbé&)time between

the two conditions for signal/noise correlation.
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Figure A2.3 Examples of single units’ raster plot, PSTH plot, and STRF at 9.§&)Rad (b)

are two simultaneously recorded masker cells. (c) and (d) are targeThellgrea between two

black dash lines represents PZ.
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Figure A2.4 Population patterns of target STRF plasticity. Differencecestthe average STRF

from behavior and passive conditions (a) for masker cells; and (b) for taliget c
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